Synlett 2022; 33(03): 247-258
DOI: 10.1055/s-0041-1737792
new tools

Tuning the Electrochemical and Photophysical Properties of Osmium-Based Photoredox Catalysts

Samantha L. Goldschmid
a   Department of Chemistry, Columbia University, New York, New York 10027, USA
,
Eva Bednářová
a   Department of Chemistry, Columbia University, New York, New York 10027, USA
,
Logan R. Beck
a   Department of Chemistry, Columbia University, New York, New York 10027, USA
,
Katherine Xie
a   Department of Chemistry, Columbia University, New York, New York 10027, USA
,
Nicholas E. S. Tay
a   Department of Chemistry, Columbia University, New York, New York 10027, USA
,
Benjamin D. Ravetz
a   Department of Chemistry, Columbia University, New York, New York 10027, USA
,
Jun Li
b   Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, USA
,
Candice L. Joe
b   Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, USA
,
a   Department of Chemistry, Columbia University, New York, New York 10027, USA
› Author Affiliations
E.B. acknowledges the Experientia Foundation for a postdoctoral fellowship. We are grateful to Bristol-Myers Squibb for support.


Abstract

The use of low-energy deep-red (DR) and near-infrared (NIR) light to excite chromophores enables catalysis to ensue across barriers such as materials and tissues. Herein, we report the detailed photophysical characterization of a library of OsII polypyridyl photosensitizers that absorb low-energy light. By tuning ligand scaffold and electron density, we access a range of synthetically useful excited state energies and redox potentials.

1 Introduction

1.1 Scope

1.2 Measuring Ground-State Redox Potentials

1.3 Measuring Photophysical Properties

1.4 Synthesis of Osmium Complexes

2 Properties of Osmium Complexes

2.1 Redox Potentials of Os(L)2-Type Complexes

2.2 Redox Potentials of Os(L)3-Type Complexes

2.3 UV/Vis Absorption and Emission Spectroscopy

3 Conclusions

Supporting Information



Publication History

Received: 16 November 2021

Accepted after revision: 29 December 2021

Article published online:
14 January 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 2 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 3 Ravetz BD, Pun AB, Churchill EM, Congreve DN, Rovis T, Campos LM. Nature 2019; 565: 343
  • 4 Ravetz BD, Tay NE. S, Joe CL, Sezen-Edmonds M, Schmidt MA, Tan Y, Janey JM, Eastgate MD, Rovis T. ACS Cent. Sci. 2020; 6: 2053
  • 5 Mei L, Veleta JM, Gianetti TL. J. Am. Chem. Soc. 2020; 142: 12056
  • 6 Demadis KD, Dattelbaum DM, Kober EM, Concepcion JJ, Paul JJ, Meyer TJ, White PS. Inorg. Chim. Acta 2007; 360: 1143
  • 7 Stull SM, Mei L, Gianetti TL. Synlett 2021; in press; DOI: 10.1055/a-1665-9220
  • 8 Wang C, Zhang H, Zhang T, Zou X, Wang H, Rosenberger JE, Vannam R, Trout WS, Grimm JB, Lavis LD, Thorpe C, Jia X, Li Z, Fox JM. J. Am. Chem. Soc. 2021; 143: 10793
  • 9 Fajardo JJr, Barth AT, Morales M, Takase MK, Winkler JR, Gray HB. J. Am. Chem. Soc. 2021; 143: 19389
  • 10 Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JC. K, Gaunt MJ. Chem. Rev. 2021; in press; DOI DOI: 10.1021/acs.chemrev.1c00357.
  • 11 Thompson DW, Ito A, Meyer T. J. Pure Appl. Chem. 2013; 85: 1257
  • 12 van der Westhuizen D, Conradie J, von Eschwege KG. Electroanalysis 2020; 32: 2838
  • 13 Liu A, Anzai J, Wang J. Bioelectrochemistry 2005; 67: 1
  • 14 Liu Y, De Nicola A, Reiff O, Ziessel R, Schanze KS. J. Phys. Chem. A 2003; 107: 3476
  • 15 Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications, 2nd ed. Harris D, Swain E. John Wiley & Sons; New York: 2004
  • 16 Gritzner G, Kuta J. Pure Appl. Chem. 1984; 56: 461
  • 17 Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. J. Chem. Educ. 2017; 95: 197
  • 18 Jones WE, Fox MA. J. Phys. Chem. 1994; 98: 5095
  • 19 Oda N, Tsuji K, Ichimura A. Anal. Sci. 2001; 17: 375
  • 20 Riis-Johannessen T, Dupont N, Canard G, Bernardinelli G, Hauser A, Piguet C. Dalton Trans. 2008; 3661
  • 21 Johnson SR, Westmoreland TD, Caspar JV, Barqawi KR, Meyer T. J. Inorg. Chem. 1988; 27: 3195
  • 22 Xu W, Peng B, Chen J, Liang M, Cai F. J. Phys. Chem. C 2008; 112: 874
  • 23 Till NA, Tian L, Dong Z, Scholes GD, MacMillan DW. C. J. Am. Chem. Soc. 2020; 142: 15830
  • 24 Kandoth N, Hernández JP, Palomares E, Lloret-Fillol J. Sustainable Energy Fuels 2021; 5: 638
  • 25 Ondongo OS, Endicott JF. Inorg. Chem. 2009; 48: 2818
  • 26 Shao JY, Zhong YW. Inorg. Chem. 2013; 52: 6464
  • 27 Wei Y, Zheng M, Chen L, Zhou X, Liu S. Dalton Trans. 2019; 48: 11763
  • 28 Amemori S, Sasaki Y, Yanai N, Kimizuka N. J. Am. Chem. Soc. 2016; 138: 8702