Thromb Haemost 1993; 70(02): 320-325
DOI: 10.1055/s-0038-1649573
Original Articles
Fibrinolysis
Schattauer GmbH Stuttgart

Pharmacokinetics of Saruplase, a Recombinant Unglycosylated Human Single-Chain Urokinase-Type Plasminogen Activator and Its Effects on Fibrinolytic and Haemostatic Parameters in Healthy Male Subjects

A de Boer
1   The Centre for Human Drug Research, University Hospital Leiden, The Netherlands
,
C Kluft
2   The Gaubius Laboratory, IVVO-TNO, Leiden, The Netherlands
,
J Gerloff
3   The Grünenthal GmbH, Aachen, Germany
,
G Dooijewaard
1   The Centre for Human Drug Research, University Hospital Leiden, The Netherlands
,
W A Günzler
3   The Grünenthal GmbH, Aachen, Germany
,
H Beier
3   The Grünenthal GmbH, Aachen, Germany
,
F J M van der Meer
4   The Thrombosis Service, Leiden, The Netherlands
,
A F Cohen
1   The Centre for Human Drug Research, University Hospital Leiden, The Netherlands
› Author Affiliations
Further Information

Publication History

Received 16 November 1992

Accepted after revision 17 February 1993

Publication Date:
04 July 2018 (online)

Summary

Pharmacokinetics of two doses of the recombinant single-chain urokinase-type plasminogen activator (r-scu-PA) saruplase (40 and 20 mg) and its effect on fibrinolytic and haemostatic parameters were studied in six healthy male subjects using a randomized, double-blind, placebo-controlled, cross-over study. Special precautions were taken to prevent artefactual in vitro effects on fibrinolytic activity.

The clearance of saruplase ranged from 310 to 862 ml/min and the apparent volume of distribution of the central compartment was about 8 1. Both doses of saruplase caused α2-antiplasmin consumption, indicating some systemic fibrinolytic activation. However, the 20 mg dose caused no detectable fibrinogen breakdown and only a small increase in total fibrin/fibrinogen degradation products (TDP) (from 0.16 μg/ml [range 0.14 to 0.19] to 0.78 μg/ml [range 0.56 to 1.26]), while the 40 mg dose produce a fibrinogen breakdown to an average value of 44% (range 19 to 60%) and TDP increased from 0.12 μg/ml (range 0.11–0.12) to 2.29 μg/ml (range 0.45 to 5.55). The breakdown of fibrinogen was related to the quantity of saruplase converted to active two-chain u-PA (tcu-PA) in vivo (6 to 22% conversion). There were no important effects of saruplase on overall blood coagulation (activated partial thromboplastin time) and platelet function (collagen induced platelet aggregation, urinary [2,3-dinor]-thromboxane B2 excretion and plasminogen activator inhibitor 1 [PAI-1] release from platelets).

Saruplase is cleared rapidly from the plasma and a variable amount is converted to tcu-PA. This two-chain form of u-PA probably causes the dose-dependent systemic fibrinolytic activation.

 
  • References

  • 1 Holmes WE, Pennica D, Blaber M. Cloning and expression of the gene for prourokinase in Escherichia coli. Bio Technology 1985; 3: 923-929
  • 2 Van der WerfF, Vanhaecke J, De Geest H, Verstraete M, Collen D. Coronary thrombolysis with recombinant single-chain urokinase-type plasminogen activator in patients with acute myocardial infarction. Circulation 1986; 74: 1066-1070
  • 3 Primi Trial Study Group. Randomized double-blind trial of recombinant pro-urokinase against streptokinase in acute myocardial infarction. Lancet 1989; 2: 863-868
  • 4 Collen D, Topol EJ, Tiefenbrunn AJ, Gold HK, Weisfeldt ML, Sobel BE, Leinbach RC, Brinker JA, Ludbrook PA, Yasuda I, Bulkley BH, Robison AK, Hutter AM, Bell WR, Spadaro JJ, Khaw BA, Gross-bard EB. Coronary thrombolysis with recombinant human tissue-type plasminogen activator: a prospective randomized placebo-controlled trial. Circulation 1984; 70: 1012-1017
  • 5 Verstraete M, Bory M, Collen D, Erbel R, Lennane RJ, Mathey D, Michels HR, Schartl M, Uebis R, Bernard R, Brower RW, De Bono DP, Huhmann W, Lubsen J, Meyer J, Rutsch W, Schmidt W, Von Essen R. Randomized trial of intravenous recombinant human tissue-type plasminogen activator vs intravenous streptokinase in acute myocardial infarction. Lancet 1985; 1: 842-847
  • 6 Diefenbach C, Erbel R, Pop T, Mathey D, Schofer J, Hamm C, Ostermann H, Schmitz-Hübner U, Bleifeld W, Meyer J. Recombinant single-chain urokinase-type plasminogen activator during acute myocardial infarction. Am J Cardiol 1988; 61: 966-970
  • 7 Flameng W, Vanhaecke J, Stump DC. Coronary thrombolysis by intravenous infusion of recombinant single-chain urokinase-type plasminogen activator or recombinant urokinase in baboons: effect on regional blood flow, infarct size and hemostasis. J Am Coll Cardiol 1986; 8: 118-124
  • 8 Hanbücken FW, Schneider J, Günzler WA, Friderichs E, Giertz H, Flohé L. Selective fibrinolytic activity of recombinant non-glycosylated human pro-urokinase (single-chain urokinase-type plasminogen activator) from bacteria. Arzneim Forsch/Drug Res 1987; 37: 993-997
  • 9 Van de Werf F, Jang IK, Collen D. Thrombolysis with recombinant single-chain urokinase-type plasminogen activator (rscu-PA): dose-324 response in dogs with coronary artery thrombosis. J Cardiovasc Pharmacol 1987; 9: 91-93
  • 10 Günzler WA, Beier H, Flohé L. Activity and antigen of saruplase and two-chain urokinase related plasminogen activator are stabilized by a combination of aprotonin and benzamidine in citrated plasma. Fibrinolysis 1990; 4 (Suppl. 02) 145-147
  • 11 Andreotti F, Davies GJ, Hackett DR, Khan MI, De Bart ACW, Aber VR, Maseri A, Kluft C. Major circadian fluctuations in fibrinolytic factors and possible relevance to time of onset of myocardial infarction, sudden death and stroke. Am J Cardiol 1988; 62: 635-637
  • 12 Clauss A. Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol 1957; 17: 237-246
  • 13 Koopman J, Haverkate F, Koppert P, Nieuwenhuizen W, Brommer EJP. New enzyme immunoassay of fibrin-fibrinogen degradation products in plasma using a monoclonal antibody. J Lab Clin Med 1987; 109: 75-84
  • 14 Kluft C, Wijngaards G, Jie AFH, Groeneveld E. Appropriate milieu for the assay of a2-antiplasmin activity with chromogenic substrates. Haemostasis 1985; 15: 198-203
  • 15 Friberger P, Knös M, Gustavsson S, Aurell L, Claeson G. Methods for determination of plasmin, antiplasmin and plasminogen by means of substrate S-2551. Haemostasis 1978; 7: 138-145
  • 16 Biggs R. Human Blood Coagulation, Haemostasis and Thrombosis. 2.. Blackwell Scientific Publications: Oxford; 1972
  • 17 Lumley P, Humphrey PA. A method for quantitating platelet aggregation and analyzing drug-receptor interactions on platelets in whole blood in vitro. J Pharm Meth 1981; 6: 153-166
  • 18 Kluft C, Jie AFH. Comparison of specificities of antigen assays for plasminogen activator inhibitor 1 (PAI-1). Fibrinolysis 1990; 4 (Suppl. 02) 136-137
  • 19 Verheijen JH, Chang GTG, Kluft C. Evidence for the occurrence of a fast acting inhibitor of tissue-type plasminogen activator in plasma. Thromb Haemostas 1984; 51: 392-395
  • 20 Noort WA, De Zwart FA, Keirse MJNC. Increase in urinary thromboxane excretion during pregnancy and labor. Prostaglandins 1987; 34: 413-421
  • 21 Gibaldi M, Perrier D. Pharmacokinetics. New York Basel: Marcel Dekker Inc; 1982: 410-411
  • 22 Lijnen HR, Zamarron C, Blaber M, Winkler ME, Collen D. Activation of plasminogen by pro-urokinase. J Biol Chem 1986; 261: 1253-1258
  • 23 Pannell R, Gurewich R. Pro-urokinase: a study of its stability in plasma and of a mechanism for its selective fibrinolytic effect. Blood 1986; 67: 1215-1223
  • 24 Zammarron C, Lijnen HR, Van Hoef B, Collen D. Biological and thrombolytic properties of proenzyme and active forms of human urokinase - I. Fibrinolytic and fibrinogenotyticproperties in human plasma in vitro of urokinases obtained from human urine or by recombinant DNA technology. Thromb Haemostas 1984; 52: 19-23
  • 25 Gurewich V, Pannell R, Louie S. Effective and fibrin-specific clot lysis by a zymogen precursor form of urokinase (pro-urokinase) - a study in vitro and in two animal species. J Clin Invest 1984; 73: 1731-1739
  • 26 Declerck PJ, Lijnen HR, Verstreken M, Moreau H, Collen D. A monoclonal antibody specific for two-chain urokinase-type plasminogen activator. Application to the study of the mechanism of clot lysis with single-chain urokinase-type plasminogen activator in plasma. Blood 1990; 75: 1794-1800
  • 27 Söhngen W, Mickelson JK, Simpson PJ, Lucchesi BR. Recombinant single-chain urokinase-type plasminogen activator (rscu-PA) induces thrombolysis and systemic fibrinolysis in a canine model of coronary artery thrombosis. Thromb Res 1988; 51: 63-74
  • 28 Mathey DG, Schoffer J, Sheenan FH, Becher H, Tilsner V, Dodge HT. Intravenous urokinase in acute myocardial infarction. Am J Cardiol 1985; 55: 878-882
  • 29 Neuhaus KL, Tebbe U, Gottwik M, Weber MAJ, Feuerer W, Niederer W, Haerer W, Praetorius F, Grosser KD, Huhmann W, Hoepp HW, Alber G, Sheikhzadeh A, Schneider B. Intravenous recombinant tissue plasminogen activator (rt-PA) and urokinase in acute myocardial infarction: results of the German Activator Urokinase Study (GAUS). J Am Coll Cardiol 1988; 12: 581-587
  • 30 Lijnen HR, Van Hoef B, De Cock F, Collen D. The mechanism of plasminogen activation and fibrin dissolution by single chain urokinase-type plasminogen activator in a plasma milieu in vitro. Blood 1989; 73: 1864-1872
  • 31 Fitzgerald DJ, Catella F, Roy L, Fitzgerald GA. Marked platelet activation in vivo after intravenous streptokinase in patients with acute myocaridal infarction. Circulation 1988; 77: 142-150
  • 32 Terres W, Umnus S, Mathey DG, Bleifeld W. Effects of streptokinase, urokinase, and recombinant tissue plasminogen activator on platelet aggregability of platelet aggregates. Cardiovasc Res 1990; 24: 471-477