Nuklearmedizin 1996; 35(02): 42-52
DOI: 10.1055/s-0038-1629694
Original Article
Schattauer GmbH

Klinische Wertigkeit der Positronen-Emissions-Tomographie (PET) bei onkologischen Fragestellungen: Ergebnisse einer interdisziplinären Konsensuskonferenz[*]

Clinical Value of Positron Emission Tomography (PET) in Oncology: Results of an Interdisciplinary Consensus Conference
S.N. Reske
1   Aus der Abteilung Nuklearmedizin, Universitätsklinikum Ulm, der Deutschland
,
R. Bares
2   Aus der Abt. Nuklearmedizin, Eberhard-Karls-Universität Tübingen, der Deutschland
,
U. Bull
3   Aus der Klinik für Nuklearmedizin, RWTH Aachen, der Deutschland
,
A. Guhlmann
1   Aus der Abteilung Nuklearmedizin, Universitätsklinikum Ulm, der Deutschland
,
E. Moser
4   Aus der Abt. Nuklearmedizin, Albert-Ludwigs-Universität Freiburg, der Deutschland
,
M. F. Wannenmacher
5   Aus der Radiologischen Universitätsklinik, Ruprecht-Karls-Universität Heidelberg Deutschland
› Author Affiliations
Further Information

Publication History

Received: 08 December 1995

Accepted: 20 December 1995

Publication Date:
03 February 2018 (online)

Zusammenfassung

Ziel: Es ist das Ziel der vorliegenden Arbeit, an Hand bisher publizierter Studienergebnisse eine Beurteilung des klinischen Stellenwertes von PET in der Onkologie zu erarbeiten. Methoden: Im Rahmen einer interdisziplinären Konferenz mit namhaften Experten wurde eine Wertung des gegenwärtigen Stands von PET in der Onkologie an Hand der in der Literatur dokumentierten Studienergebnisse erarbeitet. Angestrebt wurde eine differenzierte Bewertung von PET für die klinische Anwendung in fünf Klassen (1a, 1b, 2a, 2b, 3) von »angemessen« (1a), »akzeptabel« (1b), »hilfreich« (2a), »noch keine Bewertung möglich« (2b), »ohne Nutzen« (3). Ergebnisse: Für den klinischen Einsatz in der Onkologie ist 2-F18-Fluorodeoxyglukose (FDG) das Radiopharmakon der Wahl. PET ist klinisch in der Patientenversorgung zur Rezidivdiagnostik von high-grade Gliomen (FDG), low-grade Gliomen (C-11 Methionin oder F-18 Tyrosin), für die Dignitätsdiagnostik des peripheren Lungenrundherdes bei Risikopatienten sowie für die Diagnostik des Pankreaskarzioms indiziert (Indikation 1a). PET kann in der Patientenversorgung bei folgenden Indikationen (1b) eingesetzt werden: »low-grade« Gliome, Suche nach unbekanntem Primärtumor bei Kopf-Hals-Tumoren, Rezidivdiagnostik des nicht kleinzelligen Bronchialkarzinoms sowie des Rektumkarzinoms, Lymphknotenstaging beim nicht kleinzelligen Bronchial-Karzinom, Pan-kreas-Karzinom, muskelinvasiven Blasen-Karzinom und Hoden-Karzinom. Staging bei M. Hodgkin (Stad. I/II versus III), frühe Therapiekontrolle bei Resttumor und Rezidivdiagnostik bei M. Hodgkin und hochmalignen Non-Hodgkin-Lymphomen, Lymphknoten-Staging und Fern-metastasensuche beim malignen Melanom (Breslow >1,5 mm), Lymphknoten- und Fernmetastasen-Nachweis beim Schilddrüsen-Karzinommit erhöhtem hTg und nicht radiojodspeichernden Metastasen. Zahlreiche weitere Indikationen zeichnen sich bereits jetzt ab, sind jedoch noch weniger gut durch wissenschaftliche Studien belegt. Für die meisten Indikationen außerhalb wissenschaftlicher Studien ist eine individuelle Kosten-Nutzen-Betrachtung durch den verantwortlichen Arzt geboten. Schlußfolgerungen: Die metabolische Bildgebung von PET besitzt für eine Vielzahl onkologischer Fragestellungen prinzipielle Vorteile gegenüber der anatomisch-morphologisch orientierten Schnittbilddiagnostik. Für die klinische Indikationsstellung ist allerdings eine differenzierte Betrachtung der spezifischen Leistungsfähigkeit von PET geboten.

Summary

Aim: The purpose of the present paper is to assess clinical value of PET in oncology on the basis of published studies. Methods: Clinical value of PET in oncology was evaluated by a panel of recognized experts in the framework of an interdisciplinary consensus conference. On the basis of PET studies, well documented in the international literature, the value of PET for solving clinical questions was classified according to the following categories (classes 1a, 1b, 2a, 2b, 3): “appropriate” (1a), “mostly acceptable” (1b), “helpful” (2a), “value as yet unknown” (2b), “useless” (3). Results: 2-fluorodeoxyglucose (FDG) acts as the radiopharmaceutical of choice for PET in clinical oncology. PET is indicated (1a) for diagnosing relapse in high grade glioma (FDG) or low grade glioma (C-11 methionine or F-18 fluorotyrosine), differential diagnosis of solitary peripheral pulmonary nodules in high risk patients and for diagnosis of pancreatic carcinoma. PET may be clinically used (1b): In “low-grade” glioma, search for unknown primary in head and neck tumors, suspicion of relapse in non-small cell bronchial carcinoma (NSCBC) and colorectal carcinoma, lymph-node staging in NSCBC, pancreatic carcinoma, muscle invasive bladder carcinoma and testicular cancer. Staging of Hodgkin’s disease (HD, stage l/ll vs III), early therapy control in patients with a residual mass or suspicion of relapse in HD and in high grade NHL, lymph node staging and search for distant metastases in malignant melanoma (Breslow >1.5 mm), search for lymph node or distant metastases in differentiated thyroid cancer with elevated hTG and a negative radioiodide whole body scan. Many further indications are emerging, but are not yet sufficiently well documented in the literature. For most indications beside scientific studies, an individual cost benefit utility evaluation by the responsible physician is recommended. Conclusion: Metabolic imaging of PET provides for many principle advantages compared to conventional anatomically based cross sectional imaging. For routine use in oncology a detailed assessment of specific efficiency of PET is indicated.

* Frankfurt/Main, 08.09.1995, organisiert unter der Schirmherrschaft der Deutschen Gesellschaft für Nuklearmedizin


 
  • LITERATUR

  • 1 Shields AF, Lim K, Grierson J, Link J, Krohn KA. Utilization of labeled thymidine in DNA synthesis; studies for PET. J Nucl Med 1990; 31: 337-42.
  • 2 Fujiwara T, Matsuzawa T, Kubota K, Abe Y, Itoh M, Fukuda H, Hatazawa J, Yoshioka S, Yamaguchi K, Ito K. Relationship between histologic type of primary lung cancer and carbon-ll-L-methionine uptake with positron emission tomography. J Nucl Med 1989; 30: 33-7.
  • 3 Coenen HH, Kling P, Stocklin G. Cerebral metabolism of L-[2-18F]fluorotyrosine, a new PET tracer of protein synthesis. J Nucl Med 1989; 30: 1367-72.
  • 4 Finkelstein JD, Martin JJ. Methionine metabolism in mammals. J Biol Chem 1986; 261: 1582-7.
  • 5 Warburg O. The metabolism of tumors. Richard R Smith Inc; New York: 1931. pp 129-69.
  • 6 Hiraki Y, Rosen OM, Birnbaum MJ. Growth factors rapidly induce expression of the glucose transporter gene. J Biol Chem 1988; 263: 13655-62.
  • 7 Som P, Atkins HI, Bandophadhyah D, Fowler JS, MacGregor RR, Matsui K. et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 1980; 21: 670-5.
  • 8 Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991; 32: 623-48.
  • 9 Höh CK, Hawkins RA, Glaspy JA, Dahlbom M, Tse NY, Hoffman EJ, Schiepers C. et al. Cancer detection with whole-body PET using 2-[18F]fluoro-2-deoxy-D-glucose. J Comput Assist Tomogr 1993; 17: 582-9.
  • 10 Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH, Katzenellenbogen JA. Breast cancer: PET imaging of estrogen receptors. Radiology 1988; 169: 45-8.
  • 11 McGuire AH, Dehdashti F, Siegel BA, Lyss AP, Brodack JW, Mathias CJ, Mintun MA, Katzenellenbogen JA, Welch MJ. Positron tomographic assessment of 16a-[18F]fluoro-17ß-estradiol uptake in metastatic breast carcinoma. J Nucl Med 1991; 32: 1526-31.
  • 12 Dehdashti F, Mortimer JE, Siegel BA, Grif-feth LK, Bonasera TJ, Fusselman MJ. et al. Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med 1995; 36: 1766-74.
  • 13 Shulkin BL, Wieland DM, Schwaiger M, Thompson NW, Francis IR, Haka MS. et al. PET scanning with hydroxyephedrine: an approach to the localization of pheochro-mocytoma. J Nucl Med 1992; 33: 1125-31.
  • 14 Vaidyanathan G, Affleck DJ, Zalutsky MR. Validation of 4-[Fluorine-18]Fluoro-3-Iodo-benzylguanidine as a Positron-Emitting Analog of MIBG. J Nucl Med 1995; 36: 644-50.
  • 15 Westera G, Reist HW, Buchegger F. et al. Radioimmuno positron emission tomography with monoclonal antibodies: a new approach to quantifying in vivo tumor concentration and biodistribution for radioimmuno-therapy. Nucl Med Commun 1991; 12: 429.
  • 16 Wilson CB, Snook DE, Dhokia B. et al. Quantitative measurement of monoclonal antibody distribution and blood flow using positron emission tomography and 124I in patients with breast cancer. Int J Cancer 1991; 47: 344-7.
  • 17 Anderson CJ, Connett JM, Schwarz SW. et al. Copper-64-labeled antibodies for PET imaging. J Nucl Med 1992; 33: 1685-91.
  • 18 Philpott GW, Schwarz SW, Anderson CJ, Dehdashti F, Connett JM, Zinn KR, Meares CF. et al. RadioimmunoPET: detection of colorectal carcinoma with positron-emitting copper-64-labeled monoclonal antibody. J Nucl Med 1995; 36: 1818-24.
  • 19 Reivich M, Kühl D, Wolf A, Greenberg J, Phelps M, ldo T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L. The [18F]Fluorodeoxyglucose Method for the Measurement of Local Cerebral Glucose Utilization in Man. Circ Res 1979; 44: 127-37.
  • 20 Doyle WK, Budinger TF, Valk PE, Levin VA, Gutin PH. Differentiation of cerebral radiation necrosis from tumor recurrence by [18F]FDG and 82Rb positron emission tomography. J Comput Assist Tomogr 1987; 11: 563-70.
  • 21 DiChiro G, Oldfield E, Wright DC, DeMichele D, Katz DA, Patronas NJ, Doppman JL. et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR 1988; 150: 189-97.
  • 22 Ogawa T, Kanno I, Shishido F. et al. Clinical value of PET with F-18-fluorodeoxyglucose and 1-methyl-C-ll-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 1991; 32: 197-202.
  • 23 Kahn D, Follett KA, Bushnell DL, Nathan MA, Piper JG, Madsen M, Kirchner PT. Diagnosis of recurrent brain tumor: value of 201T1 SPECT vs 18F-fluorodeoxyglucose PET. AJR 1994; 163: 1459-65.
  • 24 Patz EF, Lowe VJ, Hoffman JM, Paine SS, Harris LK, Goodman PC. Persistent or recurrent bronchogenic carcinoma: detection with PET and 2-[F-18]-2-deoxy-D-glucose. Radiology 1994; 191: 379-82.
  • 25 Inoue T, Kim EE, Komaki R, Wong FCL, Bassa P, Wong WH. et al. Detecting recurrent or residual lung cancer with FDG-PET. J Nucl Med 1995; 36: 788-93.
  • 26 Frank A, Lefkowitz D, Jaeger S, Gobar L, Sunderland J, Gupta N. et al. Decision logic for retreatment of asymptomatic lung cancer recurrence based on positron emission tomography findings. Int J Radiat Oncol Biol Phys 1995; 32: 1495-1512.
  • 27 Strauss LG, Clorius JH, Schlag P, Lehner B, Kimmig B, Engenhart R. et al. Recurrence of colorectal tumors: PET evaluation. Radiology 1989; 170: 329-32.
  • 28 Ito K, Kato T, Tadokoro M, Ishiguchi T, Os-hima M, Ishigaki T, Sakuma S. Recurrent rectal cancer and scar: differentiation with PET and MR imaging. Radiology 1992; 182: 549-52.
  • 29 Wahl RL, Quint LE, Greenough RL, Meyer CR, White RI, Orringer MB. Staging of mediastinal non-small cell lung cancer with FDG, PET, CT, and fusion images: preliminary prospective evaluation. Radiology 1994; 191: 371-7.
  • 30 Scott WJ, Schwabe JL, Gupta NC, Dewan NA, Reeb SD, Sugimoto JT. and the members of the PET-lung tumor study group. Positron emission tomography of lung tumors and mediastinal lymph nodes using [18F] fluorodeoxyglucose. Ann Thorac Surg 1994; 58: 698-703.
  • 31 Braams JW, Pruim J, Freiing NJM, Nikkeis PGJ, Roodenburg JLN, Boering G. et al. Detection of lymph node metastases of squamous-cell cancer of the head and neck with FDG-PET and MRI. J Nucl Med 1995; 36: 211-6.
  • 32 Laubenbacher C, Saumweber D, Wagner-Manslau C, Kau RJ, Herz M, Avril N. et al. Comparison of fluorine-18- fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas. J Nucl Med 1995; 36: 1747-57.
  • 33 Newman JS, Francis IR, Kaminski MS, Wahl RL. Imaging of lymphoma with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose: correlation with CT. Radiology 1994; 190: 111-6.
  • 34 Adler LP, Crowe JP, Al-Kaisi NK, Sunshine JL. Evaluation of breast masses and axillary lymph nodes with [F-18]2-deoxy-2-fluoro-D-glucose PET. Radiology 1993; 187: 743-50.
  • 35 Stollfuß J, Glatting G, Friess H, Kocher F, Beger HG, Reske SN. 2-(Fluorine-18)-fluoro-2-deoxy-D-glucose PET in detection of pancreatic cancer: value of quantitative image interpretation. Radiology 1995; 195: 339-44.
  • 36 Bares R, Klever P, Hauptmann S, Hellwig D, Fass J, Cremerius U. et al. F-18 Fluorodeoxy-glucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology 1994; 192: 79-86.
  • 37 Inokuma T, Tamaki N, Torizuka T, Magata Y, Fujii M, Yonekura Y. et al. Evaluation of pancreatic tumors with positron emission tomography and F-18 fluorodeoxyglucose: comparison with CT and US. Radiology 1995; 195: 345-52.
  • 38 Nolop KB, Rhodes CG, Brudin LH, Beaney RP, Krausz T, Jones T. et al. Glucose utilization in vivo by human pulmonary neoplasms. Cancer 1987; 60: 2682-9.
  • 39 Kubota K, Matsuzawa T, Fujiwara T, Ito M, Hatazawa J, Ishiwata K. et al. Differential diagnosis of lung tumor. J Nucl Med 1990; 31: 1927-33.
  • 40 Gupta NC, Frank AR, Dewan NA, Redepenning LS, Rothberg ML, Mailliard JA. et al. Solitary pulmonary nodules: detection of malignancy with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1992; 184: 441-4.
  • 41 Patz EF, Lowe VJ, Hoffman JM, Paine SS, Burrowes P, Coleman RE. et al. Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology 1993; 188: 487-90.
  • 42 Rege SD, Höh CK, Glaspy JA, Aberle DR, Dahlbom M, Razavi MK. et al. Imaging of pulmonary mass lesions with whole-body positron emission tomography and fluorodeoxyglucose. Cancer 1993; 72: 82-90.
  • 43 Dewan NA, Gupta NC, Redepenning LS, Phalen JJ, Frick MP. Diagnostic efficacy of PET-FDG imaging in solitary pulmonary nodules. Potential role in evaluation and management. CHEST 1993; 104: 997-1002.
  • 44 Lowe VJ, Hoffman JM, DeLong DM, Pätz EF, Coleman RE. Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities. J Nucl Med 1994; 35: 1771-6.
  • 45 Lewis P, Griffin S, Marsden P, Gee T, Nunan T, Malsey M. et al. Whole-body 18F-fluoro-deoxyglucose positron emission tomography in preoperative evaluation of lung cancer. Lancet 1994; 344: 1265-6.
  • 46 Storck M, Grimmel S, Henrich MM, Liewald F, Reske SN, Sunder-Plassmann L. Diagnostische Wertigkeit der Positronen-Emissions-Tomographie mit Fluor-Deoxy-Gluco-se (18-FDG) bei Patienten mit Bronchialkarzinom. Z Herz-, Thorax-, Gefäßchir 1994; 8: 126-30.
  • 47 ACC/AHA Task Force Report. Guidelines for Clinical Use of Cardiac Radionuclide Imaging. Report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Radionuclide Imaging), Developed in Collaboration With the American Society of Nuclear Cardiology. JACC 1995; 25 (Suppl. 02) 521-7.
  • 48 Wienhard K, Herholz K, Coenen HH, Rudolf J, Kling P, Stöcklin G, Heiss WD. Increased amino acid transport into brain tumors measured by PET of L-(2-l8F)fluorotyrosine. J Nucl Med 1991; 32: 1338-46.
  • 49 Lilja A, Lundqvist H, Olsson Y, Spännare B, Gullberg P, Längström B. Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment-induced brain lesions. Acta Radid 1989; 30: 121-8.
  • 50 Glantz MJ, Hoffman JM, Coleman RE. et al. Identification of early recurrence of primary central nervous system tumors by [18F] fluorodeoxyglucose positron emission tomography. Ann Neurol 1991; 29: 347-55.
  • 51 Valk PE, Budinger TF, Levin VA, Silver P, Gutin PH, Doyle WK. PET of malignant cerebral tumors after interstitial brachythera-py. Demonstration of metabolic activity and correlation with clinical outcome. J Neuro-surg 1988; 69: 830-8.
  • 52 Francavilla TL, Miletech RS, Di Chiro G, Patronas NJ, Rizzli HV, Wright DC. Positron emission tomography in the detection of malignant degeneration of low-grade-gliomas. Neurosurgery 1989; 24: 1-5.
  • 53 Rege S, Maass A, Chaiken L, Höh CK, Choi Y, Lufkin R. et al. Use of positron emission tomography with fluorodeoxyglucose in patients with extracranial head and neck cancers. Cancer 1994; 73: 3047-58.
  • 54 Mancuso AA, Drane WE, Mukherji SK. The promise FDG in diagnosis and surveillance of head and neck cancer [Editorial]. Cancer 1994; 74: 1193-5.
  • 55 Haberkorn U, Strauss LG, Dimitrakopoulou A, Engenhart R, Oberdorfer F, Ostertag H. et al. PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 1991; 32: 1485-90.
  • 56 Bangerter M, Kocher F, Binder T, Griesshammer M, Heimpel H, Sandherr M, Reske SN. Total body positron emission tomography (PET) for staging and follow-up of lymphoma. Proc ASCO 1995; 14: 387 (Abstract)
  • 57 Harms W, Bares R, Kamps H, Gronimus R, Boeckmann W, Jakse G, Büll U. Therapy control of metastatic testicular carcinoma with F-18-DOG PET. J Nucl Med 1995; 36: 198P (Abstr)
  • 58 Steinen H, Huch-Böni RA, Buck A, Böni R, Berthold T, Marincek B. et al. Malignant melanoma: staging with wholebody positron emission tomography and 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1995; 195: 705-9.
  • 59 Gritters LS, Francis IR, Zasadny KR, Wahl RL. Initial assessment of positron emission tomography using 2-fluorine-18-fluoro-2-deoxy-D-glucose in the imaging of malignant melanoma. J Nucl Med 1993; 34: 1420-7.
  • 60 Feine U, Lietzenmayer R, Hanke JP, Wöhrle H, Müller-Schauenburg W. 18FDG-Ganzkör-per-PET bei differenzierten Schilddrüsenkarzinomen1. Flipflop im Speichermuster von 18FDG und 131J. Nucl.-Med 1995; 34: 127-34.
  • 61 Sisson JC, Ackermann RJ, Meyer MA, Wahl RL. Uptake of 18-fluoro-2-deoxy-D-glucose by thyroid cancer: implications for diagnosis and therapy. J clin Endocrin Metabol 1993; 77: 1090-4.
  • 62 Joensuu H, Ahonen A. Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med 1987; 28: 910-4.
  • 63 Bachor R, Kocher F, Gropengießer F, Reske SN, Hautmann RE. Positronenemissionstomographie. Einführung eines neuen Verfahrens in die Diagnostik urologischer Tumoren und erste klinische Ergebnisse. Urologe [A] 1995; 34: 138-42.
  • 64 Müller-Mattheis V, Reinhardt M, Müller-Gärtner HW, Ackermann R. Erfassung von Lymphknotenmetastasen urologischer Malignóme durch die Positron-Emissions-Tomographie (PET) mit Fluordeoxyglukose (18F-FDG). Urologe [A] 1994; 33: 29.
  • 65 Pierce MA, Johnson MD, Maciunas RJ, Murray MJ, Allen GS, Harbison MA, Creasy JL, Kessler RM. Evaluating Contrast-Enhancing Brain Lesions in Patients with AIDS by Using Positron Emission Tomography. Ann Intern Med 1995; 123: 594-8.
  • 66 Greven KM, Williams DW, Keyes JW, McGuirt WF, Watson NE, Randall ME. et al. Positron emission tomography of patients with head and neck carcinoma before and after high dose irradiation. Cancer 1994; 74: 1355-9.
  • 67 Dimitrakopoulou A, Strauss LG, Clorius JH, Ostertag H, Schlag P, Heim M. et al. Studies with positron emission tomography after systemic administration of fluorine-18-uracil in patients with liver metastases from colorectal carcinoma. J Nucl Med 1993; 34: 1075-81.
  • 68 Okazumi S, Isono K, Enomoto K, Kikuchi T, Ozaki M, Yamamoto H, Hayashi H, Asano T, Ryu M. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. J Nucl Med 1992; 33: 333-9.
  • 69 Okada J, Yoshikawa K, Imazeki K, Minoshi-ma S, Uno K, Itami J. et al. The use of FDG-PET in the detection and management of malignant lymphoma: correlation of uptake with prognosis. J Nucl Med 1991; 32: 686-91.
  • 70 Hoekstra OS, Ossenkoppele GJ, Golding R, van Lingen A, Visser GWM, Teule GJJ. et al. Early treatment response in malignant lymphoma, as determined by planar fluorine-18-fluorodeoxyglucose scintigraphy. J Nucl Med 1993; 34: 1706-10.
  • 71 Wahl RL, Cody RL, Hutchins GD, Mudgett EE. Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analogue 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1991; 179: 765-70.
  • 72 Nieweg OE, Kim EE, Wong WH, Broussard WF, Singletary SE. et al. Positron emission tomography with fluorine-18-deoxyglucose in the detection and staging of breast cancer. Cancer 1993; 71: 3920-5.
  • 73 Tse NY, Hoh CK, Hawkins RA, Zinner MJ, Dahlbom M, Choi Y. et al. The application of positron emission tomographic imaging with fluorodeoxyglucose to the evaluation of breast disease. Ann Surg 1992; 216: 27-34.
  • 74 Avril N, Janicke F, Dose J, Bense S, Ziegler S, Zinke M, Laubenbacher C, Romer W, Herz M, Schwaiger M. PET imaging of breast tumor: Munich Experience. J Nucl Med 1995; 36: 82P (Abstr).
  • 75 Huovinen R, Leskinen-Kallio S, Nagren K, Lehikoinen P, Ruotsalainen U, Teras M. Car-bon-11-methionine and PET in evaluation of treatment response of breast cancer. Br J Cancer 1993; 67: 787-91.
  • 76 Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 1993; 11: 2101-11.
  • 77 Minn H, Soini I. [18F]Fluorodeoxyglucose scintigraphy in diagnosis and follow up of treatment in advanced breast cancer. Eur J Nucl Med 1989; 15: 61-6.
  • 78 Casey MJ, Gupta NC, Muths CK. Experience with positron emission tomography (PET) scans in patients with ovarian cancer. Gynecol Oncol 1994; 53: 331-8.
  • 79 Karlan BY, Hawkins R, Hoh C, Lee M, Tse N, Cane P. et al. Whole-body positron emission tomography with 2-[18F]-fluoro-2-deoxy-D-glucose can detect recurrent ovarian carcinoma. Gynecol Oncol 1993; 51: 175-81.
  • 80 Di Chiro G, Hatazawa J, Katz DA, Rizzoli HV, DeMichele DJ. Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology 1987; 164: 521-6.
  • 81 Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, Reivich M. Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 1988; 62: 1074-8.
  • 82 Holthoff VA, Herholz K, Berthold F, Wide-mann B, Schroder R, Neubauer I, Heiss WD. In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer 1993; 72: 1394-1403.
  • 83 Hölzer T, Herholz K, Jeske J, Heiss WD. FDG-PET as a prognostic indicator in radio-chemotherapy of glioblastoma. J Comput Assist Tomogr 1993; 17: 681-7.
  • 84 De Witte O, Hildebrand J, Luxen A, Goldman S. Acute effect of carmustine on glucose metabolism in brain and glioblastoma. Cancer 1994; 74: 2836-42.
  • 85 Haberkorn U, Strauss LG, Dimitrakopoulou A, Seiffert E, Oberdorfer F, Ziegler S. et al. Fluorodeoxyglucose imaging of advanced head and neck cancer after chemotherapy. J Nucl Med 1993; 34: 12-7.
  • 86 Minn H, Paul R, Ahonen A. Evaluation of treatment response to radiotherapy in head and neck cancer with fluorine-18 fluorodeoxyglucose. J Nucl Med 1988; 29: 1521-5.
  • 87 Ichiya Y, Kuwabara Y, Otsuka M, Tahara T, Yoshikai T, Fukumura T. et al. Assessment of response to cancer therapy using fluorine-18-fluorodeoxyglucose and positron emission tomography. J Nucl Med 1991; 32: 1655-60.
  • 88 Kubota K, Yamada S, Ishiwata K, Ito M, Fujiwara T, Fukuda H. et al. Evaluation of the treatment response of lung cancer with positron emission tomography and L-[methyl-nC]methionine: a preliminary study. Eur J Nucl Med 1993; 20: 495-501.
  • 89 Abe Y, Matsuzawa T, Fujiwara T, Itoh M, Fukuda H, Yamaguchi K. et al. Clinical assessment of therapeutic effects on cancer using 18F-2-fluoro-2-deoxy-D-glucose and positron emission tomography: preliminary study of lung cancer. Int J Radiol Oncol Biol Phys 1990; 19: 1005-10.
  • 90 Torizuka T, Tamaki N, Inokuma T. et al. Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy. J Nucl Med 1994; 35: 1965-9.
  • 91 Nagata Y, Yamamoto K, Hiraoka M. et al. Monitoring liver tumor therapy with [18F]FDG positron emission tomography. J Comput Assist Tomogr 1990; 14: 370-4.
  • 92 Goldberg MA, Lee MJ, Fischman AJ, Mueller PR, Alpert NM, Thrall JH. Fluorodeoxyglucose PET of abdominal and pelvic neoplasms: potential role in oncologic imaging. RadioGraphics 1993; 13: 1047-62.
  • 93 Beets G, Penninckx F, Schiepers C, Filez L, Mortelmans L, Kerremans R. et al. Clinical value of whole-body positron emission tomography with [18F]fluorodeoxyglucose in recurrent colorectal cancer. Br J Surg 1994; 81: 1666-70.
  • 94 Engenhart R, Kimmig B, Höver KH, Strauss LG, Lorenz WJ, Wannenmacher M. Photon-neutron therapy for recurrent colorectal cancer - follow up and preliminary results. Strahlenther Onkol 1990; 166: 95-8.
  • 95 Engenhart R, Kimmig BN, Strauß LG, Höver KH, Romahn J, Haberkorn U, van Kaick G, Wannenmacher M. Therapy monitoring of presacral recurrences after high-dose irradiation: value of PET, CT, CEA and pain score. Strahlenther Onkol 1992; 168: 203-12.
  • 96 Reinhardt M, Müller-Mattheis V, Vosberg H, Ackermann R, Müller-Gärtner HW. Staging of lymph nodes in testicular cancer by FDG-PET. Eur J Nucl Med 1995; 22: 804.
  • 97 Effert PJ, Bares R, Handt S, Wolff JM, Büll U, Jakse Gerhard. Metabolic imaging of untreated prostate cancer by positron emission tomography with fluorine-18-labeled de-oxyglucose (FDG-PET). Urology 1996, im Druck.
  • 98 Hübner KF. Clinical Applications of PET in Ovarian Cancer. An Alternative To Second-Look-Surgery. Institute for Clinical PET, Seventh Annual International PET Conference, San Francisco 1995