Neuropediatrics 2016; 47(01): 005-011
DOI: 10.1055/s-0035-1566448
Review Article
Georg Thieme Verlag KG Stuttgart · New York

From Genetics to Genomics: A Short Introduction for Pediatric Neurologists

Bernd A. Neubauer
1   Abteilung Kinderneurologie, Sozialpädiatrie und Epileptologie, Universitäts-Kinderklinik Giessen und Marburg, Standort Giessen, Giessen, Germany
,
Johannes R. Lemke
2   Institut für Humangenetik, Universitätsklinikum Leipzig, Leipzig, Germany
› Author Affiliations
Further Information

Publication History

17 August 2015

19 September 2015

Publication Date:
16 November 2015 (online)

Abstract

It is estimated that in humans approximately 50% of all 22500 genes are needed for the development and maintenance of the nervous system. The introduction of high-throughput technology in genetic analysis has therefore major implications, not only for the investigation of specific disease entities but also for the diagnostic workup of single individuals with neurologic disorders of genetic origin. A short primer for clinicians is presented, addressing aspects of current developments in medical genomics. Significant findings of the last years are exemplified in an educational manner to provide a basic understanding of disease mechanisms that were unraveled by recent genomic analysis.

 
  • References

  • 1 Feero WG, Guttmacher AE, Collins FS. Genomic medicine—an updated primer. N Engl J Med 2010; 362 (21) 2001-2011
  • 2 Offit K. Personalized medicine: new genomics, old lessons. Hum Genet 2011; 130 (1) 3-14
  • 3 International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004; 431 (7011) 931-945
  • 4 Qu H, Fang X. A brief review on the Human Encyclopedia of DNA Elements (ENCODE) project. Genomics Proteomics Bioinformatics 2013; 11 (3) 135-141
  • 5 Amaral PP, Dinger ME, Mattick JS. Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. Brief Funct Genomics 2013; 12 (3) 254-278
  • 6 Mercer TR, Mattick JS. Understanding the regulatory and transcriptional complexity of the genome through structure. Genome Res 2013; 23 (7) 1081-1088
  • 7 Liebers R, Rassoulzadegan M, Lyko F. Epigenetic regulation by heritable RNA. PLoS Genet 2014; 10 (4) e1004296
  • 8 Mello CC, Conte Jr D. Revealing the world of RNA interference. Nature 2004; 431 (7006) 338-342
  • 9 Ng SB, Bigham AW, Buckingham KJ , et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010; 42 (9) 790-793
  • 10 Foo JN, Liu JJ, Tan EK. Whole-genome and whole-exome sequencing in neurological diseases. Nat Rev Neurol 2012; 8 (9) 508-517
  • 11 Shendure J, Lieberman Aiden E. The expanding scope of DNA sequencing. Nat Biotechnol 2012; 30 (11) 1084-1094
  • 12 Ward LD, Kellis M. Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol 2012; 30 (11) 1095-1106
  • 13 MacArthur DG, Manolio TA, Dimmock DP , et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014; 508 (7497) 469-476
  • 14 Gilissen C, Hoischen A, Brunner HG, Veltman JA. Disease gene identification strategies for exome sequencing. Eur J Hum Genet 2012; 20 (5) 490-497
  • 15 Biesecker LG, Green RC. Diagnostic clinical genome and exome sequencing. N Engl J Med 2014; 370 (25) 2418-2425
  • 16 Abecasis GR, Auton A, Brooks LD , et al; 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 2012; 491 (7422) 56-65
  • 17 Soden SE, Saunders CJ, Willig LK , et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med 2014; 6 (265) 265ra168
  • 18 Wieczorek D, Newman WG, Wieland T , et al. Compound heterozygosity of low-frequency promoter deletions and rare loss-of-function mutations in TXNL4A causes Burn-McKeown syndrome. Am J Hum Genet 2014; 95 (6) 698-707
  • 19 Adzhubei IA, Schmidt S, Peshkin L , et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7 (4) 248-249
  • 20 Flicek P, Amode MR, Barrell D , et al. Ensembl 2012. Nucleic Acids Res 2012; 40 (Database issue): D84-D90
  • 21 Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4 (7) 1073-1081
  • 22 Xue Y, Chen Y, Ayub Q , et al; 1000 Genomes Project Consortium. Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am J Hum Genet 2012; 91 (6) 1022-1032
  • 23 Richards S, Aziz N, Bale S , et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (5) 405-424
  • 24 Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet 2013; 93 (5) 779-797
  • 25 Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM. Pitfalls of predicting complex traits from SNPs. Nat Rev Genet 2013; 14 (7) 507-515
  • 26 Law AJ, Lipska BK, Weickert CS , et al. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease. Proc Natl Acad Sci U S A 2006; 103 (17) 6747-6752
  • 27 Pomerantz MM, Ahmadiyeh N, Jia L , et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 2009; 41 (8) 882-884
  • 28 Visel A, Zhu Y, May D , et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 2010; 464 (7287) 409-412
  • 29 Mills RE, Walter K, Stewart C , et al; 1000 Genomes Project. Mapping copy number variation by population-scale genome sequencing. Nature 2011; 470 (7332) 59-65
  • 30 Redon R, Ishikawa S, Fitch KR , et al. Global variation in copy number in the human genome. Nature 2006; 444 (7118) 444-454
  • 31 van Binsbergen E. Origins and breakpoint analyses of copy number variations: up close and personal. Cytogenet Genome Res 2011; 135 (3–4) 271-276
  • 32 Miller DT, Adam MP, Aradhya S , et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010; 86 (5) 749-764
  • 33 Mefford HC, Yendle SC, Hsu C , et al. Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol 2011; 70 (6) 974-985
  • 34 Helbig I, Mefford HC, Sharp AJ , et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 2009; 41 (2) 160-162
  • 35 de Kovel CG, Trucks H, Helbig I , et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 2010; 133 (Pt 1): 23-32
  • 36 Grayton HM, Fernandes C, Rujescu D, Collier DA. Copy number variations in neurodevelopmental disorders. Prog Neurobiol 2012; 99 (1) 81-91
  • 37 Lango Allen H, Estrada K, Lettre G , et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010; 467 (7317) 832-838
  • 38 Manolio TA, Collins FS, Cox NJ , et al. Finding the missing heritability of complex diseases. Nature 2009; 461 (7265) 747-753
  • 39 den Hollander AI, de Jong EK. Highly penetrant alleles in age-related macular degeneration. Cold Spring Harb Perspect Med 2015; 5 (3) a017202
  • 40 Michail S, Bultron G, Depaolo RW. Genetic variants associated with Crohn's disease. Appl Clin Genet 2013; 6: 25-32
  • 41 Rasool M, Malik A, Naseer MI , et al. The role of epigenetics in personalized medicine: challenges and opportunities. BMC Med Genomics 2015; 8 (Suppl. 01) S5
  • 42 Oates NA, van Vliet J, Duffy DL , et al. Increased DNA methylation at the AXIN1 gene in a monozygotic twin from a pair discordant for a caudal duplication anomaly. Am J Hum Genet 2006; 79 (1) 155-162
  • 43 Kaelin Jr WG, McKnight SL. Influence of metabolism on epigenetics and disease. Cell 2013; 153 (1) 56-69
  • 44 Zeidan AM, Linhares Y, Gore SD. Current therapy of myelodysplastic syndromes. Blood Rev 2013; 27 (5) 243-259
  • 45 Kilpinen H, Dermitzakis ET. Genetic and epigenetic contribution to complex traits. Hum Mol Genet 2012; 21 (R1): R24-R28
  • 46 Nelson VR, Nadeau JH. Transgenerational genetic effects. Epigenomics 2010; 2 (6) 797-806
  • 47 Buchner DA, Nadeau JH. Contrasting genetic architectures in different mouse reference populations used for studying complex traits. Genome Res 2015; 25 (6) 775-791
  • 48 Spiezio SH, Takada T, Shiroishi T, Nadeau JH. Genetic divergence and the genetic architecture of complex traits in chromosome substitution strains of mice. BMC Genet 2012; 13: 38
  • 49 Bygren LO. Intergenerational health responses to adverse and enriched environments. Annu Rev Public Health 2013; 34: 49-60
  • 50 Kaati G, Bygren LO, Pembrey M, Sjöström M. Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet 2007; 15 (7) 784-790
  • 51 Kassiotis G. Endogenous retroviruses and the development of cancer. J Immunol 2014; 192 (4) 1343-1349
  • 52 Douville RN, Nath A. Human endogenous retroviruses and the nervous system. Handb Clin Neurol 2014; 123: 465-485
  • 53 Derfuss T, Curtin F, Guebelin C , et al. A phase IIa randomised clinical study of GNbAC1, a humanised monoclonal antibody against the envelope protein of multiple sclerosis-associated endogenous retrovirus in multiple sclerosis patients. Mult Scler 2015; 21 (7) 885-893
  • 54 Volkman HE, Stetson DB. The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 2014; 15 (5) 415-422
  • 55 Gendiagnostikgesetz vom 31 . Juli 2009 (BGBl. I S. 2529, 3672), das durch Artikel 2 Absatz 31 u. Artikel 4 Absatz 18 des Gesetzes vom 7. August 2013 (BGBl. I S. 3154) geändert worden ist. Quelle: Bundesministerium der Justiz