Klin Monbl Augenheilkd 2014; 231(4): 447-452
DOI: 10.1055/s-0034-1368236
Klinische Studie
Georg Thieme Verlag KG Stuttgart · New York

Retinal Vessel Oxygen Saturation in Patients Suffering from Inherited Diseases of the Retina

Sauerstoffsättigung der retinalen Gefässe bei hereditären Netzhauterkrankungen
M. G. Todorova
1   University of Basel, Department of Ophthalmology, Switzerland (Chairman: Prof. Josef Flammer)
,
C. Türksever
1   University of Basel, Department of Ophthalmology, Switzerland (Chairman: Prof. Josef Flammer)
,
D. F. Schorderet
2   IRO – Institute de Recherche en Ophtalmologie, Sion, Switzerland (Chairman: Prof. Daniel F. Schorderet)
,
C. Valmaggia
3   Kantonspital, St.Gallen, Department of Ophthalmology, Switzerland (Chairman: Dr. Christophe Valmaggia)
› Author Affiliations
Further Information

Publication History

received 13 September 2014

accepted 01 January 2014

Publication Date:
25 April 2014 (online)

Abstract

Purpose: The aim of this study was to evaluate the oxygen saturation in patients with inherited diseases of the retina. Methods: Fundus oximetry images were taken using a retinal vessel analyser (IMEDOS Systems UG, Jena, Germany). Retinal vessel oximetry was performed in 53 eyes of 27 patients suffering from inherited retinal diseases and compared to 22 eyes of 11 healthy controls. The oxygen saturation in all four major retinal arterioles (A-SO2) and venules (V-SO2) were measured and their difference (A − V SO2) was calculated. The data were compared within groups and to controls. Results: Based on V-SO2 values, the rod-cone dystrophy group (66.46 %; SD, ± 5.09) could well be differentiated from controls 54.02 % (SD, ± 3.04), from cone-rod dystrophies 57.56 % (SD, ± 5.66), as well as from inherited maculopathies 58.42% (SD, ± 4.74). The mean A-SO2 in the rod-cone dystrophy group was increased to 98.96 % (SD, ± 6.06, p < 0.014), while in the cone-rod group and in the maculopathy group it was 92.75 % (SD, ± 3.75), respectively 94.44 % (SD ± 4.85), closer to the normal values (92.68 %; SD, ± 3.53, p > 0.05). The A − V SO2 difference, as an indirect indicator for retinal oxygen use, was reduced in the rod-cone patients, however only when the controls were taken into account (p = 0.01). Conclusion: This is to our knowledge the first study which proposes the retinal vessel oximetry to be a sensitive measure for differentiating rod-cone dystrophy patients not only from controls, but also from patients with other inherited retinal dystrophies.

Zusammenfassung

Hintergrund: Evaluation der Sauerstoffsättigung bei Patienten mit hereditären Netzhauterkrankungen. Material und Methoden: Es wurden Fundusoxymetrieaufnahmen mittels eines RVA-Geräts (IMEDOS Systems UG, Jena, Germany) durchgeführt. Retinale Oxymetrie (RO) wurde bei Patienten mit hereditären Netzhauterkrankungen (n = 27, 53 Augen) durchgeführt und mit denen von Kontrollprobanden verglichen (n = 11, 22 Augen). Die Sauerstoffsättigung der arteriellen (A-SO2) und venösen (V-SO2) Gefäße sowie deren Differenz (A − V SO2) wurde ausgemessen und innerhalb der Gruppe und mit der Gruppe der Kontrollprobanden verglichen. Ergebnisse: Gemäß der V-SO2-Mittelwerte (± SD) konnten die Stäbchen-Zapfen-Dystrophien (66,46 %, SD ± 5,09) von der Kontrollgruppe (54,02 %, SD ± 3,04), von den Zapfen-Stäbchen-Dystrophien (57,56 %, SD ± 5,66) und von den hereditären Makulopathien (58,42 %, SD ± 4,74) differenziert werden. Die A-SO2 waren bei der Stäbchen-Zapfen-Dystrophie-Gruppe mit 98,96 % (SD ± 6,06, p < 0,014) im Vergleich zu den Kontrollprobanden mit 92,68 % (SD ± 3,53, p > 0,05) erhöht. Andererseits unterscheidet sich die A-SO2 der Zapfen-Stäbchen-Dystrophie-Gruppe mit 92,75 % (SD ± 3,75) und die der Makulopathiegruppe mit 94,44 % (SD ± 4,85) nicht von der der Kontrollgruppe. Einzig die A − V SO2-Differenz war in der Stäbchen-Zapfen-Dystrophie-Gruppe im Vergleich zur Kontrollgruppe reduziert (p = 0,01). Schlussfolgerung: Diese erste Studie zur Sauerstoffsättigung bei Patienten mit hereditären Netzhauterkrankungen zeigt, dass Stäbchen-Zapfen-Dystrophie-Patienten sich sowohl von der Kontrollgruppe als auch von anderen Patienten mit hereditären Netzhauterkrankungen unterscheiden lassen.

 
  • References

  • 1 Ammann F, Klein D, Franceschetti A. Genetic and epidemiological investigations on pigmentary degeneration of the retina and allied disorders in Switzerland. J Neurol Sci 1965; 2: 183-196
  • 2 Puech B, Kostrubiec B, Hache JC et al. Epidemiology and prevalence of hereditary retinal dystrophies in the Northern France. J Fr Ophtalmol 1991; 14: 153-164
  • 3 Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis 2006; 1: 40
  • 4 Hamel CP. Cone rod dystrophies. Orphanet J Rare Dis 2007; 2: 7
  • 5 Michaelides M, Hunt DM, Moore AT. The genetics of inherited macular dystrophies. J Med Genet 2003; 40: 641-650
  • 6 Anderson jr. B, Saltzman H. Retinal oxygen utilisation measured by hyperbaric blackout. Arch Ophthalmol 1964; 72: 792-795
  • 7 Wangsa-Wirawan ND, Linsenmeier RA. Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 2003; 121: 547-557
  • 8 Yu DY, Cringle SJ. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 2001; 20: 175-208
  • 9 Stefánsson E, Wolbarsht ML, Landers 3rd MB. In vivo O2 consumption in rhesus monkeys in light and dark. Exp Eye Res 1983; 37: 251-256
  • 10 Yu DY, Cringle SJ. Retinal degeneration and local oxygen metabolism. Exp Eye Res 2005; 80: 745-751
  • 11 Marc RE, Jones BW, Watt CB et al. Neural remodeling in retinal degeneration. Prog Retin Eye Res 2003; 22: 607-655
  • 12 Marc RE, Jones BW. Retinal remodeling in inherited photoreceptor degenerations. Mol Neurobiol 2003; 28: 139-147
  • 13 Cottet S, Schorderet DF. Mechanisms of apoptosis in retinitis pigmentosa. Curr Mol Med 2009; 9: 375-383
  • 14 Sahaboglu A, Paquet-Durand O, Dietter J et al. Retinitis pigmentosa: rapid neurodegeneration is governed by slow cell death mechanisms. Cell Death Dis 2013; DOI: 10.1038/cddis.2013.12.
  • 15 Schweitzer D, Thamm E, Hammer M et al. A new method for the measurement of oxygen saturation at the human ocular fundus. Int Ophthalmol 2001; 23: 347-353
  • 16 Hammer M, Thamm E, Schweitzer D. A simple algorithm for in vivo ocular fundus oximetry compensating for non-haemoglobin absorption and scattering. Phys Med Biol 2002; 47: 233-238
  • 17 Geirsdottir A, Palsson O, Hardarson SH et al. Retinal vessel oxygen saturation in healthy individuals. Invest Ophthalmol Vis Sci 2012; 53: 5433-5442
  • 18 Hardarson SH, Harris A, Karlsson RA et al. Automatic retinal oximetry. Invest Ophthalmol Vis Sci 2006; 47: 5011-5016
  • 19 Olafsdottir OB, Hardarson SH, Gottfredsdottir MS et al. Retinal oximetry in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 6409-6413
  • 20 Hardarson SH, Hardarson SH. Retinal oxygen saturation is altered in diabetic retinopathy. Br J Ophthalmol 2012; 96: 560-563
  • 21 Boeckaert J, Vandewalle E, Stalmans I. Oximetry: recent insights into retinal vasopathies and glaucoma. Bull Soc Belge Ophtalmol 2012; 319: 75-83
  • 22 Hardarson SH, Basit S, Jonsdottir TE et al. Oxygen saturation in human retinal vessels is higher in dark than in light. Invest Ophthalmol Vis Sci 2009; 50: 2308-2311
  • 23 Hardarson SH, Elfarsson A, Agnarsson BA et al. Retinal oximetry in central retinal artery occlusion. Acta Ophthalmol 2013; 91: 189-190
  • 24 Vandewalle E, Abegão Pinto L, Olafsdottir OB et al. Oximetry in glaucoma: correlation of metabolic change with structural and functional damage. Acta Ophthalmol 2014; 92: 105-110
  • 25 Stefánsson E, Hatchell DL, Fisher BL et al. Panretinal photocoagulation and retinal oxygenation in normal and diabetic cats. Am J Ophthalmol 1986; 101: 657-664
  • 26 Stefánsson E, Machemer R, de Juan jr. E et al. Retinal oxygenation and laser treatment in patients with diabetic retinopathy. Am J Ophthalmol 1992; 113: 36-48
  • 27 Beutelspacher SC, Serbecic N, Barash H et al. Retinal blood flow velocity measured by retinal function imaging in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 2011; 249: 1855-1888
  • 28 Ma Y, Kawasaki R, Dobson LP et al. Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2012; 53: 4306-4314
  • 29 Konieczka K, Flammer A, Todorova M et al. Retinitis pigmentosa and ocular blood flow. EPMA J 2012; 3: 17
  • 30 Pepe I. Recent advances in our understanding of rhodopsin and phototransduction. Prog Retin Eye Res 2001; 20: 733-759
  • 31 Braun RD, Linsenmeier RA, Goldstick TK. Oxygen consumption in the inner and outer retina of the cat. Invest Ophthalmol Vis Sci 1995; 36: 542-554
  • 32 Panfoli I, Calzia D, Bianchini P et al. Evidence for aerobic metabolism in retinal rod outer segment disks. Int J Biochem Cell Biol 2009; 41: 2555-2565
  • 33 Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 2010; 29: 335-375
  • 34 Milam AH, Li ZY, Fariss RN. Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res 1999; 18: 175-205
  • 35 Harris A, Ciulla TA, Chung HS et al. Regulation of retinal and optic nerve blood flow. Arch Ophthalmol 1998; 116: 1491-1495
  • 36 Beach JM, Schwenzer KJ, Srinivas S et al. Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation. J Appl Physiol 1999; 86: 748-758
  • 37 Hammer M, Vilser W, Riemer T et al. Retinal vessel oximetry-calibration, compensation for vessel diameter and fundus pigmentation, and reproducibility. J Biomed Opt 2008; 13: 054015