Laryngorhinootologie 2014; 93(03): 201
DOI: 10.1055/s-0033-1363960
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Die Rolle von miRNA bei Kopf-Hals-Malignomen

Role of miRNA in Malignoma of the Head and Neck
A. Coordes
1   Hals-, Nasen- und Ohrenklinikder der Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin
,
M. Lenarz
1   Hals-, Nasen- und Ohrenklinikder der Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin
,
A. M. kaufmann
2   Gynäkologische Tumorimmunologie, Gynäkologie der Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin
,
A. E. Albers
1   Hals-, Nasen- und Ohrenklinikder der Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
27 February 2014 (online)

Zusammenfassung

In den vergangenen Jahren hat sich das Langzeitüberleben beim Plattenepithelkarzinom im Kopf-Halsbereich (KH-PECA) trotz optimierter Therapiemaßnahmen nur geringfügig verbessert. Die meisten Studien zum Genom der Tumorzellen fokussieren auf Protein-kodierende Gene (Exons). Daten über Veränderungen der nicht-kodierenden Sequenzen (Introns) sind begrenzt. miRNAs (microRNA, miR) sind kleine, nicht-kodierende einzelsträngige RNAs, die die Genexpression auf posttranskriptionaler Ebene durch Interaktion mit der mRNA kontrollieren. miRNA-Funktionen umfassen zahlreiche biologische Prozesse und regulieren nach Hochrechnungen bis zu 50% der menschlichen Gene. Sie können onkogen oder tumorsuppressiv sein. Veränderte Expressionsmuster der miRNA sind mit der Karzinogenese und Tumorprogression auch bei den KH-PECA bzw. denjenigen Prozessen beteiligt (erhöhte Resistenz gegenüber Strahlen- oder Chemotherapie), die für die anhaltend schlechte Prognose durch Bildung von Metastasen und inoperablen Rezidiven verantwortlich sein könnten. Daher werden hier die miRNA Gruppen vorgestellt, die eine Bedeutung für diese Prozesse besitzen und die somit auch als mögliche Zielstrukturen neuer Therapien dienen könnten. miRNA können möglicherweise zudem als Biomarker für die frühe Diagnose, Prognose, Bewertung der Behandlung und Überwachung eines Rezidivs dienen. Eine Veränderung der miRNA-Expression in KH-PECA vor und nach Chemotherapie ist daher von großem Interesse. Langfristig könnten diese Erkenntnisse zu wirksameren Therapien führen, die die Prognose von KH-PECA verbessern.

Abstract

Despite optimized therapeutic strategies, the long-term survival of head and neck squamous cell carcinomas (HNSCC) has improved in recent years only slightly. Most studies on the tumor cell genome focus on protein-coding genes (exons). Data on changes within the non-coding sequences (introns) are limited. miRNAs (microRNA, miR) are small non-coding single-stranded RNAs that control gene expression at the posttranscriptional level by interacting with the mRNA. miRNA functions include many biological processes and control up to 50 % of human genes. They can have oncogenic or tumor suppressive functions. Altered expression patterns of miRNAs are involved in carcinogenesis and tumor progression even in HNSCC, or those processes (increased resistance to radiation or chemotherapy) that could be responsible for the poor long-term prognosis by forming metastases and inoperable local recurrences. Therefore, we here present miRNA groups, which are involved in these processes and may serve as new potential therapeutic treatment targets. miRNAs may also serve as biomarkers for early diagnosis, evaluation and monitoring of treatment and tumor recurrence. Alterations in miRNA expression before and after chemotherapy are therefore of high interest. In the long run, this knowledge could lead to more effective therapies with improved therapeutic outcome of HNSCC.

 
  • Literatur

  • 1 Jones AS, Goodyear PW, Ghosh S et al. Extensive neck node metastases (N3) in head and neck squamous carcinoma: is radical treatment warranted?. Otolaryngol Head Neck Surg 2011; 144: 29-35
  • 2 Pignon JP, le Maitre A, Maillard E et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17 346 patients. Radiother Oncol 2009; 92: 4-14
  • 3 [Anonym]. IARC Cancer Incidence in Five Continents. Vol IX 1983–2002, DOI
  • 4 Hammarstedt L, Lindquist D, Dahlstrand H et al. Human papillomavirus as a risk factor for the increase in incidence of tonsillar cancer. Int J Cancer 2006; 119: 2620-2623
  • 5 Leeman-Neill RJ, Seethala RR, Singh SV et al. Inhibition of EGFR-STAT3 signaling with erlotinib prevents carcinogenesis in a chemically-induced mouse model of oral squamous cell carcinoma. Cancer Prevention Research 2011; 4: 230-237
  • 6 Wienholds E, Plasterk RH. MicroRNA function in animal development. FEBS Letters 2005; 579: 5911-5922
  • 7 Bourguignon LY, Earle C, Wong G et al. Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene 31: 149-160
  • 8 Lu Z, Liu M, Stribinskis V et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008; 27: 4373-4379
  • 9 Xu X, Chen Z, Zhao X et al. MicroRNA-25 promotes cell migration and invasion in esophageal squamous cell carcinoma. Biochem Biophys Res Commun. 421: 640-645
  • 10 Babu JM, Prathibha R, Jijith VS et al. A miR-centric view of head and neck cancers. Biochim Biophys Acta 1816; 67-72
  • 11 Lo WL, Yu CC, Chiou GY et al. MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. The Journal of pathology 2011; 223: 482-495
  • 12 Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8: 755-768
  • 13 Mani SA, Guo W, Liao MJ et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704-715
  • 14 Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010; 29: 4741-4751
  • 15 Boominathan L. The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS ONE [Electronic Resource] 2010; 5: e10615
  • 16 Xu J, Gimenez-Conti IB, Cunningham JE et al. Alterations of p53, cyclin D1, Rb, and H-ras in human oral carcinomas related to tobacco use. Cancer 1998; 83: 204-212
  • 17 Haraf DJ, Nodzenski E, Brachman D et al. Human papilloma virus and p53 in head and neck cancer: clinical correlates and survival. Clin Cancer Res 1996; 2: 755-762
  • 18 Klussmann JP, Gultekin E, Weissenborn SJ et al. Expression of p16 protein identifies a distinct entity of tonsillar carcinomas associated with human papillomavirus. Am J Pathol 2003; 162: 747-753
  • 19 Talis AL, Huibregtse JM, Howley PM. The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J Biol Chem 1998; 273: 6439-6445
  • 20 Xie X, Piao L, Bullock BN et al. Targeting HPV16 E6-p300 interaction reactivates p53 and inhibits the tumorigenicity of HPV-positive head and neck squamous cell carcinoma. Oncogene 2013;
  • 21 Ji Q, Hao X, Zhang M et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PloS one 2009; 4: e6816
  • 22 Ji Q, Hao X, Meng Y et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 2008; 8: 266
  • 23 Li B, Hu Y, Ye F et al. Reduced miR-34a expression in normal cervical tissues and cervical lesions with high-risk human papillomavirus infection. Int J Gynecol Cancer 2010; 20: 597-604
  • 24 Martinez I, Gardiner AS, Board KF et al. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 2008; 27: 2575-2582
  • 25 Wald AI, Hoskins EE, Wells SI et al. Alteration of microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus. Head Neck 33: 504-512
  • 26 Sniezek JC, Matheny KE, Westfall MD et al. Dominant negative p63 isoform expression in head and neck squamous cell carcinoma. Laryngoscope 2004; 114: 2063-2072
  • 27 Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P et al. miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ 2008; 15: 1187-1195
  • 28 Yi R, Poy MN, Stoffel M et al. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 2008; 452: 225-229
  • 29 Sonkoly E, Wei T, Janson PC et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis?. PloS one 2007; 2: e610
  • 30 Feber A, Xi L, Luketich JD et al. MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 2008; 135: 255-260 discussion 260
  • 31 Iorio MV, Visone R, Di Leva G et al. MicroRNA signatures in human ovarian cancer. Cancer Res 2007; 67: 8699-8707
  • 32 Kozaki K, Imoto I, Mogi S et al. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 2008; 68: 2094-2105
  • 33 Yanaihara N, Caplen N, Bowman E et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189-198
  • 34 Li J, Chen Y, Zhao J et al. miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression. Cancer Lett 2011; 304: 52-59
  • 35 Liu X, Wang C, Chen Z et al. MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochem J 2011; 440: 23-31
  • 36 Melar-New M, Laimins LA. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol 2010; 84: 5212-5221
  • 37 He L, He X, Lim LP et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130-1134
  • 38 Chen C, Zimmermann M, Tinhofer I et al. Epithelial-to-mesenchymal transition and cancer stem(-like) cells in head and neck squamous cell carcinoma. Cancer Lett 2013; 338: 47-56