Synthesis 2013; 45(16): 2245-2250
DOI: 10.1055/s-0033-1338490
paper
© Georg Thieme Verlag Stuttgart · New York

‘Click’ [3+2]-Cycloaddition Approach to Novel Cookson’s Birdcage-Derived Thiacrown Ethers

Monika Stefaniak
University of Łódź, Department of Organic and Applied Chemistry, Tamka 12, 91-403 Łódź, Poland   Fax: +48(42)6655162   Email: romanski@uni.lodz.pl
,
Marcin Jasiński
University of Łódź, Department of Organic and Applied Chemistry, Tamka 12, 91-403 Łódź, Poland   Fax: +48(42)6655162   Email: romanski@uni.lodz.pl
,
Jarosław Romański*
University of Łódź, Department of Organic and Applied Chemistry, Tamka 12, 91-403 Łódź, Poland   Fax: +48(42)6655162   Email: romanski@uni.lodz.pl
› Author Affiliations
Further Information

Publication History

Received: 05 March 2013

Accepted after revision: 09 May 2013

Publication Date:
18 June 2013 (online)


Abstract

The synthesis of novel Cookson’s birdcage-annulated thiacrowns as well as noncage oligomers with an incorporated 1,2,3-triazole moiety are described. The title compounds were prepared applying a click alkyne–azide cycloaddition reaction in the final macrocyclization step. Using this methodology a series of oligomers containing oxygen, nitrogen, and sulfur were prepared. The effective cycloaddition process was carried out under nonaqueous conditions in the presence of a catalytic amount of copper(I) iodide and N,N-diisopropylethylamine; the yields of oligomers were moderate to good.

Supporting Information

 
  • References

  • 1 Meadow JR, Reid EE. J. Am. Chem. Soc. 1934; 56: 2177
    • 2a Baumann TF, Reynolds JG, Fox GA. React. Funct. Polym. 2000; 44: 111
    • 2b Fedorova OA, Fedorov YV, Vedernikov AI, Gromov SP, Yescheulova OV, Alfimov MV, Woerner M, Bossmann S, Braun A, Saltiel J. J. Phys. Chem. A 2002; 106: 6213
    • 2c Minkin VI, Dubonosov AD, Bren VA, Tsukanov AV. ARKIVOC 2008; (iv): 90
    • 2d Lee TK.-M, Zhu N, Yam VW.-W. J. Am. Chem. Soc. 2010; 132: 17646
    • 2e Ingram JD, Costa PJ, Adams H, Ward MD, Félix V, Thomas JA. Inorg. Chem. 2012; 51: 10483
    • 2f Grant GJ. Dalton Trans. 2012; 41: 8745
  • 3 Siswanta D, Nagatsuka K, Yamada K, Kumakura K, Hisamoto H, Shichi Y, Toshima K, Suzuki K. Anal. Chem. 1996; 68: 4166
    • 4a Cookson RC, Grundwell E, Hudec J. Chem. Ind. (London) 1958; 1003
    • 4b Marchand AP, Allen RW. J. Org. Chem. 1974; 39: 1596
    • 5a Marchand AP, Kumar KA, McKim AS, Mlinarić-Majerski K, Kragol G. Tetrahedron 1997; 53: 3467
    • 5b Marchand AP, Chong H.-S. Tetrahedron 1999; 55: 9697
    • 5c Marchand AP, Cal D, Mlinarić-Majerski K, Ejsmont K, Watson WH. J. Chem. Crystallogr. 2002; 32: 447

      For the synthesis and biological activity of selected pentacycloundecane-derived compounds, see:
    • 6a Oliver DW, Malan SF. Med. Chem. Res. 2008; 17: 137
    • 6b Wilkes DK, de Vries A, Oliver DW, Malan SF. Arch. Pharm. (Weinheim, Ger.) 2009; 342: 73
    • 6c Onajole OK, Sosibo S, Govender P, Govender T, van Helden PD, Maguire GE. M, Mlinarić-Majerski K, Wiid I, Kruger HG. Chem. Biol. Drug Des. 2011; 78: 1022
    • 6d Wang J, Ma C, Balannik V, Pinto LH, Lamb RA, DeGrado WF. Med. Chem. Lett. 2011; 2: 307
    • 6e Karpoormath R, Sayed Y, Govender P, Govender T, Kruger HG, Soliman ME. S, Maguire GE. M. Bioorg. Chem. 2012; 40: 19
    • 7a Wu G, Jiang W, Lamb JD, Bradshaw JS, Izatt RM. J. Am. Chem. Soc. 1991; 113: 6538
    • 7b Edema JJ. H, Buter J, Schoonbeek FS, Kellogg RM, van Bolhuis F, Spek AL. Inorg. Chem. 1994; 33: 2448
    • 7c Lange SJ, Sibert JW, Barrett AG. M, Hoffman BM. Tetrahedron 2000; 56: 7371
    • 7d Tsuchiya T, Shimizu T, Kamigata N. J. Am. Chem. Soc. 2001; 123: 11534
    • 8a Latyshev GV, Baranov MS, Kazantsev AV, Averin AD, Lukashev NV, Beletskaya IP. Synthesis 2009; 2605
    • 8b Binauld S, Hawker CJ, Fleury E, Drockenmuller E. Angew. Chem. 2009; 121: 6782 ; Angew. Chem. Int. Ed. 2009, 48, 6654
    • 9a Huisgen R. Proc. Chem. Soc., London 1961; 357
    • 9b Tornoe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 9c Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. 2002; 114: 2708 ; Angew. Chem. Int. Ed. 2002, 41, 2596
    • 10a Bonger KM, van der Berg RJ. B. H. N, Heitman LH, IJzerman AP, Oosterom J, Timmers CM, Overkleeft HS, van der Marel GA. Bioorg. Med. Chem. 2007; 15: 4841
    • 10b Gao Y, Chen L, Zhang Z, Gu W, Li Y. Biomacromolecules 2010; 11: 3102
  • 11 See ref. 77 in: Kolb HC, Finn MG, Sharpless KB. Angew. Chem. 2001; 113: 2056 ; Angew. Chem. Int. Ed. 2001, 40, 2004
  • 12 Yao Z.-J, Wu H.-P, Wu Y.-L. J. Med. Chem. 2000; 43: 2484
  • 13 Since the original protocol (see ref. 5a) used hazardous benzene for azeotropic removal of H2O, we were pleased to find that a large excess of freshly dried MgSO4 was also sufficient. In a typical procedure, the crude diol prepared from diketone 1 (3.12 g, 17.9 mmol) was dissolved in anhyd CH2Cl2 (250 mL), anhyd MgSO4 (22.0 g. 0.18 mol) followed by TsOH·H2O (1.0 g, 5.26 mmol) were added, and the resulting mixture was vigorously stirred for 2 d at r.t. (TLC monitoring, permanganate stain). After filtration through Celite and purification on short column (silica gel, hexanes–CHCl2, 1:1) compound 6 was isolated (2.83 g, 74% yield for 2 steps).
  • 14 Blair SM, Brodbelt JS, Marchand AP, Kumar KA, Chong H.-S. Anal. Chem. 2000; 72: 2433
  • 15 Gokel WG In Encyclopedia of Supramolecular Chemistry . Vol. 1. Atwood JL, Steed JW. CRC Press; New York: 2004: 326