Semin Reprod Med 2013; 31(01): 062-068
DOI: 10.1055/s-0032-1331799
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Amniotic Fluid and Placental Membranes: Unexpected Sources of Highly Multipotent Cells

Sean V. Murphy
1   Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
,
Anthony Atala
1   Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
› Author Affiliations
Further Information

Publication History

Publication Date:
17 January 2013 (online)

Abstract

Gestational tissue such as the placenta, placental membranes, and amniotic fluid are usually discarded following birth. Recently, researchers have identified gestational tissue as an untapped source of stem cells that are highly multipotent and possess potent immunosuppressive properties. Placental mesenchymal stem cells (MSCs), human amnion epithelial cells (hAECs), and amniotic fluid–derived stem cells (AFSCs) have been shown to differentiate into various cell types including adipogenic, osteogenic, myogenic, endothelial, pulmonary, neurogenic, hepatogenic, cardiac, and pancreatic lineages. Their immunomodulatory properties suggest that gestational stem cells may have an important application in the treatment of various inflammatory diseases such as graft versus host and autoimmune diseases. In clinical and preclinical studies, gestational stem cells have shown efficacy in the treatment of Crohn disease, lung disease, diabetes, repair of bone defects, heart disease, kidney disease, neural degeneration, and blood disorders. Stem cells derived from the placenta, placental membranes, and amniotic fluid are a valuable resource for the field of regenerative medicine.

 
  • References

  • 1 De Coppi P, Bartsch Jr G, Siddiqui MM , et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25 (1) 100-106
  • 2 Murphy S, Rosli S, Acharya R , et al. Amnion epithelial cell isolation and characterization for clinical use. Curr Protoc Stem Cell Biol 2010; ;Chapter 1:Unit 1E.6
  • 3 Serikov V, Hounshell C, Larkin S , et al. Human term placenta as a source of hematopoietic cells. Exp Biol Med (Maywood) 2009; 234 (7) 813-823
  • 4 Troyer DL, Weiss ML. Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells 2008; 26 (3) 591-599
  • 5 Galende E, Karakikes I, Edelmann L , et al. Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cell Reprogram 2010; 12 (2) 117-125
  • 6 Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 2007; 77 (3) 577-588
  • 7 In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C , et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003; 102 (4) 1548-1549
  • 8 Delo DM, De Coppi P, Bartsch Jr G, Atala A. Amniotic fluid and placental stem cells. Methods in Enzymology 2006; 419: 426-438
  • 9 Shaw SW, David AL, De Coppi P. Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr Opin Obstet Gynecol 2011; 23 (2) 109-116
  • 10 Murphy S, Lim R, Dickinson H , et al. Human amnion epithelial cells prevent bleomycin-induced lung injury and preserve lung function. Cell Transplant 2011; 20 (6) 909-923
  • 11 Furth ME, Atala A. Stem cell sources to treat diabetes. J Cell Biochem 2009; 106 (4) 507-511
  • 12 Delo DM, Olson J, Baptista PM , et al. Non-invasive longitudinal tracking of human amniotic fluid stem cells in the mouse heart. Stem Cells Dev 2008; 17 (6) 1185-1194
  • 13 Perin L, Giuliani S, Jin D , et al. Renal differentiation of amniotic fluid stem cells. Cell Prolif 2007; 40 (6) 936-948
  • 14 Snow MH, Bennett D. Gastrulation in the mouse: assessment of cell populations in the epiblast of tw18/tw18 embryos. J Embryol Exp Morphol 1978; 47: 39-52
  • 15 Downs KM, Harmann C. Developmental potency of the murine allantois. Development 1997; 124 (14) 2769-2780
  • 16 Downs KM, Hellman ER, McHugh J, Barrickman K, Inman KE. Investigation into a role for the primitive streak in development of the murine allantois. Development 2004; 131 (1) 37-55
  • 17 Gardner RL, Beddington RS. Multi-lineage ‘stem’ cells in the mammalian embryo. J Cell Sci Suppl 1988; 10: 11-27
  • 18 Loebel DA, Watson CM, De Young RA, Tam PP. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol 2003; 264 (1) 1-14
  • 19 Moser M, Li Y, Vaupel K , et al. Placental failure and impaired vasculogenesis result in embryonic lethality for neuropathy target esterase-deficient mice. Mol Cell Biol 2004; 24 (4) 1667-1679
  • 20 Smith JL, Gesteland KM, Schoenwolf GC. Prospective fate map of the mouse primitive streak at 7.5 days of gestation. Dev Dyn 1994; 201 (3) 279-289
  • 21 Kinder SJ, Tsang TE, Quinlan GA, Hadjantonakis AK, Nagy A, Tam PP. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 1999; 126 (21) 4691-4701
  • 22 Parameswaran M, Tam PP. Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev Genet 1995; 17 (1) 16-28
  • 23 Rathjen J, Lake JA, Bettess MD, Washington JM, Chapman G, Rathjen PD. Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 1999; 112 (Pt 5) 601-612
  • 24 Dang SM, Kyba M, Perlingeiro R, Daley GQ, Zandstra PW. Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng 2002; 78 (4) 442-453
  • 25 Li L, Arman E, Ekblom P, Edgar D, Murray P, Lonai P. Distinct GATA6- and laminin-dependent mechanisms regulate endodermal and ectodermal embryonic stem cell fates. Development 2004; 131 (21) 5277-5286
  • 26 Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg 2001; 36 (11) 1662-1665
  • 27 Robinson WP, McFadden DE, Barrett IJ , et al. Origin of amnion and implications for evaluation of the fetal genotype in cases of mosaicism. Prenat Diagn 2002; 22 (12) 1076-1085
  • 28 Bartha JL, Romero-Carmona R, Comino-Delgado R, Arce F, Arrabal J. Alpha-fetoprotein and hematopoietic growth factors in amniotic fluid. Obstet Gynecol 2000; 96 (4) 588-592
  • 29 Heidari Z, Isobe K, Goto S, Nakashima I, Kiuchi K, Tomoda Y. Characterization of the growth factor activity of amniotic fluid on cells from hematopoietic and lymphoid organs of different life stages. Microbiol Immunol 1996; 40 (8) 583-589
  • 30 Sakuragawa N, Elwan MA, Fujii T, Kawashima K. Possible dynamic neurotransmitter metabolism surrounding the fetus. J Child Neurol 1999; 14 (4) 265-266
  • 31 Srivastava MD, Lippes J, Srivastava BI. Cytokines of the human reproductive tract. Am J Reprod Immunol 1996; 36 (3) 157-166
  • 32 Baschat AA, Hecher K. Fetal growth restriction due to placental disease. Semin Perinatol 2004; 28 (1) 67-80
  • 33 Medina-Gómez P, del Valle M. Cultivo de célas de líquido amniótico. Análisis de colonias, metafases e índice mitótico, con fin de descartar contaminación de células maternas. Ginecol Obstet Mex 1988; 56: 122-126
  • 34 Pittenger MF, Mackay AM, Beck SC , et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284 (5411) 143-147
  • 35 Parolini O, Alviano F, Bagnara GP , et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 2008; 26 (2) 300-311
  • 36 Steigman SA, Fauza DO. Isolation of mesenchymal stem cells from amniotic fluid and placenta. Curr Protoc Stem Cell Biol 2007; ;Chapter 1:Unit 1E.2
  • 37 Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 2004; 19 (6) 1450-1456
  • 38 Alviano F, Fossati V, Marchionni C , et al. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 2007; 7: 11
  • 39 Bailo M, Soncini M, Vertua E , et al. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 2004; 78 (10) 1439-1448
  • 40 Li CD, Zhang WY, Li HL , et al. Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation. Cell Res 2005; 15 (7) 539-547
  • 41 Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24 (5) 1294-1301
  • 42 Miki T, Marongiu F, Ellis E, Strom SC. Isolation of amniotic epithelial stem cells. Curr Protoc Stem Cell Biol 2007; ;Chapter 1:Unit 1E.3
  • 43 Li H, Niederkorn JY, Neelam S , et al. Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 2005; 46 (3) 900-907
  • 44 Hori J, Wang M, Kamiya K, Takahashi H, Sakuragawa N. Immunological characteristics of amniotic epithelium. Cornea 2006; 25 (10) (Suppl. 01) S53-S58
  • 45 Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg 2001; 36 (11) 1662-1665
  • 46 Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stem cells. Nat Biotechnol 2005; 23 (6) 699-708
  • 47 Guo CS, Wehrle-Haller B, Rossi J, Ciment G. Autocrine regulation of neural crest cell development by steel factor. Dev Biol 1997; 184 (1) 61-69
  • 48 National Institutes of Health. A multi-center study to evaluate the safety and efficacy of intravenous infusion of human placenta-derived cells (PDA001) for the treatment of adults with moderate-to-severe Crohn's disease. Available at: http://clinicaltrials.gov/ct2/show/NCT01155362?term=PDA001&rank=4
  • 49 Murphy SV, Shiyun SC, Tan JL , et al. Human amnion epithelial cells do not abrogate pulmonary fibrosis in mice with impaired macrophage function. Cell Transplant 2012; ; April 10 (Epub ahead of print)
  • 50 Wei JP, Zhang TS, Kawa S , et al. Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant 2003; 12 (5) 545-552
  • 51 Chang CM, Kao CL, Chang YL , et al. Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells. Biochem Biophys Res Commun 2007; 357 (2) 414-420
  • 52 Bollini S, Cheung KK, Riegler J , et al. Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells Dev 2011; 20 (11) 1985-1994
  • 53 Lee WY, Wei HJ, Lin WW , et al. Enhancement of cell retention and functional benefits in myocardial infarction using human amniotic-fluid stem-cell bodies enriched with endogenous ECM. Biomaterials 2011; 32 (24) 5558-5567
  • 54 Perin L, Sedrakyan S, Giuliani S , et al. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS ONE 2010; 5 (2) e9357
  • 55 Rehni AK, Singh N, Jaggi AS, Singh M. Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behav Brain Res 2007; 183 (1) 95-100
  • 56 Ditadi A, de Coppi P, Picone O , et al. Human and murine amniotic fluid c-Kit + Lin- cells display hematopoietic activity. Blood 2009; 113 (17) 3953-3960