Aktuelle Rheumatologie 2012; 37(06): 358-365
DOI: 10.1055/s-0032-1314795
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Pathogenetisch orientierte Therapieansätze bei der Osteoarthrose – Sind DMOADs in der Pipeline?

Pathogenetic-Oriented Therapies for Osteoarthritis – Are New DMOADS on the Way?
L. Godmann
1   Institut für Experimentelle Muskuloskelettale Medizin, Universitätsklinikum Münster, Münster
,
T. Pap
1   Institut für Experimentelle Muskuloskelettale Medizin, Universitätsklinikum Münster, Münster
,
J. Bertrand
1   Institut für Experimentelle Muskuloskelettale Medizin, Universitätsklinikum Münster, Münster
› Author Affiliations
Further Information

Publication History

Publication Date:
20 June 2012 (online)

Zusammenfassung

Die Osteoarthrose (OA) ist im Gegensatz zur rheumatoiden Arthritis eine primär degenerative Gelenkerkrankung. Neue Erkenntnisse zeigen allerdings, dass die OA keine rein passive Verschleißerkrankung ist, sondern ein aktiver Prozess, der auf einem komplexen Zusammenspiel der 3 Kompartimente des Gelenkknorpels, -knochens und -synoviums beruht. Die Knorpelmatrix geht durch Veränderungen in der Knorpelhomöostase verloren. Der Knochen und die Synovialmembran verdicken sich und pro-inflammatorische Zytokine führen zu rezidivierenden Entzündungsschüben, die auf alle 3 Kompartimente zurück wirken und zum letztendlichen Funktionsverlust des Gelenks führen. Dennoch ist die OA ganz klar von der rheumatoiden Arthritis zu unterscheiden, welche auch zum Funktionsverlust des Gelenks führt, die aber primär entzündlich ist. Versucht man aktuelle Strategien, krankheitsmodifizierende, also disease modifying OA drugs (DMOADs) für die OA zu entwickeln, so kann man die 3 oben beschriebenen Kompartimente als Ansatzpunkte wiedererkennen. Ausgehend von den bestehenden, legt dieser Artikel den Fokus auf neue Therapiestrategien zur Behandlung der OA sowie deren Mechanismen, welche primär auf den Knorpel, den Knochen sowie die Synovialmembran abzielen. Viele dieser Therapiestrategien sind im Tiermodell vielversprechend, es bleibt aber für die meisten Ansätze weiter offen, inwieweit sich diese ersten Ergebnisse auf den Menschen übertragen lassen.

Abstract

Osteoarthritis (OA), in comparison to rheumatoid arthritis (RA), is primarily a degenerative joint disease. New studies have revealed that OA is not a passive joint disease due to the constant wear, but constitutes an active process involving the 3 compartments of the joint: the cartilage, bone and synovium. The composition of the cartilage matrix changes and is lost due to complex changes in cartilage homeostasis. The thickness of the subchondral bone and the synovial membrane increases. Pro-inflammatory cytokines induce recurring inflammatory flares that affect all 3 compartments and lead to loss of joint function during the endstages of the disease. Nevertheless, OA has to be distinguished clearly from RA which, although is also characterised by the loss of joint function, in fact is primarily an inflammatory disease. Therefore, the development of new, disease-modifiying, strategies to treat OA using so-called disease-modifying OA drugs (DMOADs), exposes the 3 compartments described above as therapeutic starting points. Based on the existing evidence, this article focuses on new therapeutic strategies for the treatment of OA as well as the underlying pathways of action to affect one of the 3 compartments. Some of these strategies are promising in animal models, but their effectivity remains to be proven in humans.

 
  • Literatur

  • 1 Chang HX, Yang L, Li Z et al. Age-related biological characterization of mesenchymal progenitor cells in human articular cartilage. Orthopedics 2011; 34: e382-e388
  • 2 Blankenhorn EP, Bryan G, Kossenkov AV et al. Genetic loci that regulate healing and regeneration in LG/J and SM/J mice. Mamm Genome 2009; 20: 720-733
  • 3 Fuerst M, Bertrand J, Lammers L et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum 2009; 60: 2694-2703
  • 4 Suri S, Walsh DA. Osteochondral alterations in osteoarthritis. Bone 2011;
  • 5 Adams MA, Al-Rawahi MS, Luo J et al. Mechanical significance of vertebral body osteophytes. J Bone Joint Surg Br 2009; 91-B: 485-c-486-c
  • 6 Intema F, Hazewinkel HA, Gouwens D et al. In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model. Osteoarthritis Cartilage 2010; 18: 691-698
  • 7 Lajeunesse D, Reboul P. Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling. Curr Opin Rheumatol 2003; 15: 628-633
  • 8 Benito MJ, Veale DJ, FitzGerald O et al. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 2005; 64: 1263-1267
  • 9 Adams Jr SB, Setton LA, Kensicki E et al. Global metabolic profiling of human osteoarthritic synovium. Osteoarthritis Cartilage. 2011
  • 10 Gege C, Bao B, Bluhm H et al. Discovery and Evaluation of a Non-Zn Chelating, Selective Matrix Metalloproteinase 13 (MMP-13) Inhibitor for Potential Intra-Articular Treatment of Osteoarthritis. J Med Chem 2011;
  • 11 Settle S, Vickery L, Nemirovskiy O et al. Cartilage degradation biomarkers predict efficacy of a novel, highly selective matrix metalloproteinase 13 inhibitor in a dog model of osteoarthritis: confirmation by multivariate analysis that modulation of type II collagen and aggrecan degradation peptides parallels pathologic changes. Arthritis Rheum 2010; 62: 3006-3015
  • 12 Ni GX, Zhan LQ, Gao MQ et al. Matrix metalloproteinase-3 inhibitor retards treadmill running-induced cartilage degradation in rats. Arthritis Res Ther 2011; 13: R192
  • 13 Overall CM, Kleifeld O. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 2006; 6: 227-239
  • 14 Schmidtko A, Gao W, Konig P et al. cGMP produced by NO-sensitive guanylyl cyclase essentially contributes to inflammatory and neuropathic pain by using targets different from cGMP-dependent protein kinase I. J Neurosci 2008; 28: 8568-8576
  • 15 Sun W, Wang J, Jin D et al. Long-term effect of nitric oxide synthase inhibitor on repair of articular cartilage defects repairing. Zhonghua Yi Xue Za Zhi 2002; 82: 23-26
  • 16 Jarvinen K, Vuolteenaho K, Nieminen R et al. Selective iNOS inhibitor 1 400 W enhances anti-catabolic IL-10 and reduces destructive MMP-10 in OA cartilage. Survey of the effects of 1 400 W on inflammatory mediators produced by OA cartilage as detected by protein antibody array. Clin Exp Rheumatol 2008; 26: 275-282
  • 17 Lee SW, Song YS, Shin SH et al. Cilostazol protects rat chondrocytes against nitric oxide-induced apoptosis in vitro and prevents cartilage destruction in a rat model of osteoarthritis. Arthritis Rheum 2008; 58: 790-800
  • 18 Merrihew C, Kumar B, Heretis K et al. Alterations in endogenous osteogenic protein-1 with degeneration of human articular cartilage. J Orthop Res 2003; 21: 899-907
  • 19 Cook SD, Patron LP, Salkeld SL et al. Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs. J Bone Joint Surg Am 2003; 85-A (Suppl. 03) 116-123
  • 20 Honsawek S, Chayanupatkul M, Tanavalee A et al. Relationship of plasma and synovial fluid BMP-7 with disease severity in knee osteoarthritis patients: a pilot study. Int Orthop 2009; 33: 1171-1175
  • 21 Hurtig M, Chubinskaya S, Dickey J et al. BMP-7 protects against progression of cartilage degeneration after impact injury. J Orthop Res 2009; 27: 602-611
  • 22 Hunter DJ, Pike MC, Jonas BL et al. Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet Disord 2010; 11: 232
  • 23 Dell’accio F, De Bari C, Eltawil NM et al. Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 2008; 58: 1410-1421
  • 24 Dell’Accio F, De Bari C, Luyten FP. Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis Rheum 2001; 44: 1608-1619
  • 25 Blom AB, Brockbank SM, van Lent PL et al. Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1. Arthritis Rheum 2009; 60: 501-512
  • 26 Yuasa T, Otani T, Koike T et al. Wnt/beta-catenin signaling stimulates matrix catabolic genes and activity in articular chondrocytes: its possible role in joint degeneration. Lab Invest 2008; 88: 264-274
  • 27 Zhu M, Tang D, Wu Q et al. Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J Bone Miner Res 2009; 24: 12-21
  • 28 Voorzanger-Rousselot N, Ben-Tabassi NC, Garnero P. Opposite relationships between circulating Dkk-1 and cartilage breakdown in patients with rheumatoid arthritis and knee osteoarthritis. Ann Rheum Dis 2009; 68: 1513-1514
  • 29 Leyns L, Bouwmeester T, Kim SH et al. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 1997; 88: 747-756
  • 30 Loughlin J, Dowling B, Chapman K et al. Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc Natl Acad Sci USA 2004; 101: 9757-9762
  • 31 Luyten FP, Tylzanowski P, Lories RJ. Wnt signaling and osteoarthritis. Bone 2009; 44: 522-527
  • 32 Akiyama H, Lyons JP, Mori-Akiyama Y et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 2004; 18: 1072-1087
  • 33 Lories RJ, Peeters J, Bakker A et al. Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum 2007; 56: 4095-4103
  • 34 Zhu M, Chen M, Zuscik M et al. Inhibition of beta-catenin signaling in articular chondrocytes results in articular cartilage destruction. Arthritis Rheum 2008; 58: 2053-2064
  • 35 Chen M, Zhu M, Awad H et al. Inhibition of beta-catenin signaling causes defects in postnatal cartilage development. J Cell Sci 2008; 121: 1455-1465
  • 36 Nalesso G, Sherwood J, Bertrand J et al. WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. J Cell Biol 2011; 193: 551-564
  • 37 Keum E, Kim Y, Kim J et al. Syndecan-4 regulates localization, activity and stability of protein kinase C-alpha. Biochem J 2004; 378: 1007-1014
  • 38 Woods A, Longley RL, Tumova S et al. Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts. Arch Biochem Biophys 2000; 374: 66-72
  • 39 Park PW, Reizes O, Bernfield M. Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters. J Biol Chem 2000; 275: 29923-29926
  • 40 Echtermeyer F, Bertrand J, Dreier R et al. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med 2009; 15: 1072-1076
  • 41 Wang J, Markova D, Anderson DG et al. TNF-alpha and IL-1beta Promote a Disintegrin-like and Metalloprotease with Thrombospondin Type I Motif-5-mediated Aggrecan Degradation through Syndecan-4 in Intervertebral Disc. J Biol Chem 2011; 286: 39738-39749
  • 42 Murphy JM, Fink DJ, Hunziker EB et al. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 2003; 48: 3464-3474
  • 43 Madry H, Cucchiarini M. Clinical potential and challenges of using genetically modified cells for articular cartilage repair. Croat Med J 2011; 52: 245-261
  • 44 Vanlauwe J, Saris DB, Victor J et al. Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med 2011; 39: 2566-2574
  • 45 Sondergaard BC, Wulf H, Henriksen K et al. Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes. Osteoarthritis Cartilage 2006; 14: 759-768
  • 46 Sondergaard BC, Madsen SH, Segovia-Silvestre T et al. Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes. BMC Musculoskelet Disord 2010; 11: 62
  • 47 Karsdal MA, Byrjalsen I, Henriksen K et al. The effect of oral salmon calcitonin delivered with 5-CNAC on bone and cartilage degradation in osteoarthritic patients: a 14-day randomized study. Osteoarthritis Cartilage 2010; 18: 150-159
  • 48 Hayami T, Pickarski M, Wesolowski GA et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 2004; 50: 1193-1206
  • 49 Tat SK, Pelletier JP, Verges J et al. Chondroitin and glucosamine sulfate in combination decrease the pro-resorptive properties of human osteoarthritis subchondral bone osteoblasts: a basic science study. Arthritis Res Ther 2007; 9: R117
  • 50 Kwan Tat S, Amiable N, Pelletier JP et al. Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology (Oxford) 2009; 48: 1482-1490
  • 51 Pantsulaia I, Kalichman L, Kobyliansky E. Association between radiographic hand osteoarthritis and RANKL, OPG and inflammatory markers. Osteoarthritis Cartilage 2010; 18: 1448-1453
  • 52 Pilichou A, Papassotiriou I, Michalakakou K et al. High levels of synovial fluid osteoprotegerin (OPG) and increased serum ratio of receptor activator of nuclear factor-kappa B ligand (RANKL) to OPG correlate with disease severity in patients with primary knee osteoarthritis. Clin Biochem 2008; 41: 746-749
  • 53 Furuzawa-Carballeda J, Macip-Rodriguez PM, Cabral AR. Osteoarthritis and rheumatoid arthritis pannus have similar qualitative metabolic characteristics and pro-inflammatory cytokine response. Clin Exp Rheumatol 2008; 26: 554-560
  • 54 Smith RJ, Chin JE, Sam LM et al. Biologic effects of an interleukin-1 receptor antagonist protein on interleukin-1-stimulated cartilage erosion and chondrocyte responsiveness. Arthritis Rheum 1991; 34: 78-83
  • 55 Chevalier X, Goupille P, Beaulieu AD et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 2009; 61: 344-352
  • 56 Rudolphi K, Gerwin N, Verzijl N et al. Pralnacasan, an inhibitor of interleukin-1beta converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage 2003; 11: 738-746
  • 57 Wieland HA, Michaelis M, Kirschbaum BJ et al. Osteoarthritis – an untreatable disease?. Nat Rev Drug Discov 2005; 4: 331-344
  • 58 Martel-Pelletier J, Mineau F, Jolicoeur FC et al. In vitro effects of diacerhein and rhein on interleukin 1 and tumor necrosis factor-alpha systems in human osteoarthritic synovium and chondrocytes. J Rheumatol 1998; 25: 753-762
  • 59 Boittin M, Redini F, Loyau G et al. Effect of diacerhein (ART 50) on the matrix synthesis and collagenase secretion by cultured joint chondrocytes in rabbits. Rev Rhum Ed Fr 1993; 60: 68S-76S
  • 60 Fidelix TS, Soares BG, Trevisani VF. Diacerein for osteoarthritis. Cochrane Database Syst Rev 2006; CD005117
  • 61 Magnano MD, Chakravarty EF, Broudy C et al. A pilot study of tumor necrosis factor inhibition in erosive/inflammatory osteoarthritis of the hands. J Rheumatol 2007; 34: 1323-1327
  • 62 Fioravanti A, Fabbroni M, Cerase A et al. Treatment of erosive osteoarthritis of the hands by intra-articular infliximab injections: a pilot study. Rheumatol Int 2009; 29: 961-965