Horm Metab Res 2010; 42(13): 930-935
DOI: 10.1055/s-0030-1265219
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Amelioration of Insulin Resistance by Scopoletin in High-Glucose-Induced, Insulin-Resistant HepG2 Cells

W. Y. Zhang1 , 2 , J.-J. Lee1 , 3 , Y. Kim1 , I.-S. Kim1 , J.-S. Park3 , 4 , 5 , C.-S. Myung1 , 3 , 5
  • 1Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 305-764, Republic of Korea
  • 2Present address: Department of Chemical Biology, Xiamen University College of Chemistry and Chemical Engineering, Xiamen 361005, P. R. China
  • 3Institute of Drug Research & Development, Chungnam National University, Daejeon 305-764, Republic of Korea
  • 4Department of Physical Pharmacy, Chungnam National University College of Pharmacy, Daejeon 305-764, Republic of Korea
  • 5Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 305-764, Republic of Korea
Further Information

Publication History

received 05.05.2010

accepted 24.08.2010

Publication Date:
30 September 2010 (online)

Abstract

Insulin resistance plays an important role in the development of type 2 diabetes mellitus. Scopoletin, a phenolic coumarin, is reported to regulate hyperglycemia and diabetes. To examine its effect on insulin resistance, we treated high-glucose-induced, insulin-resistant HepG2 cells with scopoletin and measured phosphatidylinositol 3-kinase (PI3 K)-linked protein kinase B (Akt/PKB) phosphorylation. Scopoletin significantly stimulated the reactivation of insulin-mediated Akt/PKB phosphorylation. This effect was blocked by LY294002, a specific PI3 K inhibitor. The ability of scopoletin to activate insulin-mediated Akt/PKB was greater than that of rosiglitazone, a thiazolidinedione, and scopoletin was less adipogenic than rosiglitazone, as shown by the extent of lipid accumulation in differentiated adipocytes. Scopoletin increased the gene expression of both peroxisome proliferator-activated receptor γ2 (PPARγ2), a target receptor for rosiglitazone, and adipocyte-specific fatty acid binding protein, but not to the level induced by rosiglitazone. However, the PPARγ2 protein level was increased equally by rosiglitazone and scopoletin in differentiated adipocytes. Our results suggest that scopoletin can ameliorate insulin resistance in part by upregulating PPARγ2 expression. With its lower adipogenic property, scopoletin may be a useful candidate for managing metabolic disorders, including type 2 diabetes mellitus.

References

  • 1 Efendic S, Luft R, Wajngot A. Aspects of the pathogenesis of type 2 diabetes.  Endocr Rev. 1984;  5 395-410
  • 2 Groop LC. Insulin resistance: the fundamental trigger of type 2 diabetes.  Diabetes Obes Metab. 1999;  1 (S 01) S1-S7
  • 3 Gerich JE. Pathogenesis and treatment of type 2 (noninsulin-dependent) diabetes mellitus (NIDDM).  Horm Metab Res. 1996;  28 404-412
  • 4 Reddy SS, Karuna R, Baskar R, Saralakumari D. Prevention of insulin resistance by ingesting aqueous extract of Ocimum sanctum to fructose-fed rats.  Horm Metab Res. 2008;  40 44-49
  • 5 Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs.  Pharmacol Res. 2005;  51 85-94
  • 6 Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism.  Endocr Rev. 1999;  20 649-688
  • 7 Kintscher U, Law RE. PPARγ-mediated insulin sensitization: the importance of fat versus muscle.  Am J Physiol Endocrinol Metab. 2005;  288 E287-E291
  • 8 Tontonoz P, Hu E, Spiegelman BM. Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor gamma.  Curr Opin Genet Dev. 1995;  5 571-576
  • 9 Picard F, Auwerx J. PPAR(gamma) and glucose homeostasis.  Annu Rev Nutr. 2002;  22 167-197
  • 10 Ferre P. The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity.  Diabetes. 2004;  53 (S 01) S43-S50
  • 11 Nolan JJ, Ludvik B, Beerdsen P, Joyce M, Olefsky J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone.  N Engl J Med. 1994;  331 1188-1193
  • 12 Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma).  J Biol Chem. 1995;  270 12953-12956
  • 13 Adams M, Montague CT, Prins JB, Holder JC, Smith SA, Sanders L, Digby JE, Sewter CP, Lazar MA, Chatterjee VK, O’Rahilly S. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation.  J Clin Invest. 1997;  100 3149-3153
  • 14 Frias JP, Yu JG, Kruszynska YT, Olefsky JM. Metabolic effects of troglitazone therapy in type 2 diabetic, obese, and lean normal subjects.  Diabetes Care. 2000;  23 64-69
  • 15 Raskin P, Rappaport EB, Cole ST, Yan Y, Patwardhan R, Freed MI. Rosiglitazone short-term monotherapy lowers fasting and post-prandial glucose in patients with type II diabetes.  Diabetologia. 2000;  43 278-284
  • 16 Schindler K, Rieger A, Tura A, Gmeinhardt B, Touzeau-Romer V, Haider D, Pacini G, Ludvik B. The effect of rosiglitazone on insulin sensitivity, beta cell function, bone mineral density, and body composition in hiv-positive patients on highly-active antiretroviral therapy (HAART).  Horm Metab Res. 2009;  41 573-579
  • 17 Willson TM, Lambert MH, Kliewer SA. Peroxisome proliferator-activated receptor gamma and metabolic disease.  Annu Rev Biochem. 2001;  70 341-367
  • 18 Panda S, Kar A. Evaluation of the antithyroid, antioxidative and antihyperglycemic activity of scopoletin from Aegle marmelos leaves in hyperthyroid rats.  Phytother Res. 2006;  20 1103-1105
  • 19 Okada Y, Miyauchi N, Suzuki K, Kobayashi T, Tsutsui C, Mayuzumi K, Nishibe S, Okuyama T. Search for naturally occurring substances to prevent the complications of diabetes. II. Inhibitory effect of coumarin and flavonoid derivatives on bovine lens aldose reductase and rabbit platelet aggregation.  Chem Pharm Bull (Tokyo). 1995;  43 1385-1387
  • 20 Nakajima K, Yamauchi K, Shigematsu S, Ikeo S, Komatsu M, Aizawa T, Hashizume K. Selective attenuation of metabolic branch of insulin receptor down-signaling by high glucose in a hepatoma cell line, HepG2 cells.  J Biol Chem. 2000;  275 20880-20886
  • 21 Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman NB, Cohen RA. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells.  J Biol Chem. 2004;  279 47898-47905
  • 22 Lee SY, Kang JS, Song GY, Myung CS. Stress induces the expression of heterotrimeric G protein beta subunits and the phosphorylation of PKB/Akt and ERK1/2 in rat brain.  Neurosci Res. 2006;  56 180-192
  • 23 Song GY, Kang JS, Lee SY, Myung CS. Region-specific reduction of Gbeta4 expression and induction of the phosphorylation of PKB/Akt and ERK1/2 by aging in rat brain.  Pharmacol Res. 2007;  56 295-302
  • 24 Xu ME, Xiao SZ, Sun YH, Ou-yang Y, Guan C, Zheng XX. A preadipocyte differentiation assay as a method for screening potential anti-type II diabetes drugs from herbal extracts.  Planta Med. 2006;  72 14-19
  • 25 DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM.  Diabetes. 1988;  37 667-687
  • 26 DeFronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus.  Diabetes. 2009;  58 773-795
  • 27 DeFronzo RA. Current issues in the treatment of type 2 diabetes. Overview of newer agents: where treatment is going.  Am J Med. 2010;  123 S38-S48
  • 28 Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling.  Biochem J. 1998;  333 (Pt 3) 471-490
  • 29 Li P, Koike T, Qin B, Kubota M, Kawata Y, Jia YJ, Oshida Y. A high-fructose diet impairs Akt and PKCζ phosphorylation and GLUT4 translocation in rat skeletal muscle.  Horm Metab Res. 2008;  40 528-532
  • 30 Olefsky JM, Saltiel AR. PPAR gamma and the treatment of insulin resistance.  Trends Endocrinol Metab. 2000;  11 362-368
  • 31 Olefsky JM. Treatment of insulin resistance with peroxisome proliferator-activated receptor gamma agonists.  J Clin Invest. 2000;  106 467-472
  • 32 Rahimian R, Masih-Khan E, Lo M, van Breemen C, McManus BM, Dube GP. Hepatic over-expression of peroxisome proliferator activated receptor gamma2 in the ob/ob mouse model of non-insulin dependent diabetes mellitus.  Mol Cell Biochem. 2001;  224 29-37
  • 33 Schoonjans K, Martin G, Staels B, Auwerx J. Peroxisome proliferator-activated receptors, orphans with ligands and functions.  Curr Opin Lipidol. 1997;  8 159-166
  • 34 Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors.  Genes Dev. 2000;  14 121-141
  • 35 Hassan M, El Yazidi C, Landrier JF, Lairon D, Margotat A, Amiot MJ. Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells.  Biochem Biophys Res Commun. 2007;  361 208-213

Correspondence

Dr. C-S. Myung

Department of Pharmacology

Chungnam National University

College of Pharmacy

220 Geung-dong, Yuseong-gu

Daejeon 305-764

Republic of Korea

Phone: +82/42/821 5923

Fax: +82/42/821 8900

Email: cm8r@cnu.ac.kr

    >