Klin Monbl Augenheilkd 2011; 228(7): 613-620
DOI: 10.1055/s-0029-1245625
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Retinotope Kartierung des menschlichen visuellen Kortex mit funktioneller Magnetresonanztomografie – Grundlagen, aktuelle Entwicklungen und Perspektiven für die Ophthalmologie

Retinotopic Mapping of the Human Visual Cortex with Functional Magnetic Resonance Imaging – Basic Principles, Current Developments and Ophthalmological PerspectivesM. B. Hoffmann1 , F. Kaule1 , R. Grzeschik1 , W. Behrens-Baumann1 , B. Wolynski1
  • 1Klinik für Augenheilkunde, Universität Magdeburg
Further Information

Publication History

Eingegangen: 28.4.2010

Angenommen: 15.7.2010

Publication Date:
25 August 2010 (online)

Zusammenfassung

Seit ihrer ursprünglichen Entwicklung Mitte der 90er-Jahre leistet die auf funktioneller Magnetresonanztomografie (fMRT) basierte retinotope Kartierung des visuellen Kortex einen fundamentalen Beitrag zum Verständnis des menschlichen Sehsystems. Multiple kortikale Repräsentationen des Gesichtsfeldes wurden nachgewiesen und so zahlreiche visuelle Areale identifiziert. Die Organisation einzelner Areale wurde im Detail beschrieben und Einflüsse pathophysiologischer Prozesse im Sehsystem auf die kortikale Organisation aufgedeckt. Diesen Ergebnissen liegen Untersuchungen mit einer Magnetfeldstärke von 3 Tesla oder weniger zugrunde. Ein Feldstärkenvergleich von 3 und 7 Tesla ergab, dass die retinotope Kartierung von einer Magnetfeldstärke von 7 Tesla profitiert und insbesondere Detailkartierungen mit einer hohen räumlichen Auflösung ermöglicht. Im Bereich der Ophthalmologie ist die Anwendung der fMRT-basierten retinotopen Kartierung insbesondere zur Untersuchung von Grundlagenfragestellungen zur Plastizität des menschlichen visuellen Kortex vielversprechend. Dies unterstreichen bisherige Studien an Patienten mit makulärer Fehlfunktion oder abnormalen Sehnervenprojektionen.

Abstract

Since its initial introduction in the mid-1990 s, retinotopic mapping of the human visual cortex, based on functional magnetic resonance imaging (fMRI), has contributed greatly to our understanding of the human visual system. Multiple cortical visual field representations have been demonstrated and thus numerous visual areas identified. The organisation of specific areas has been detailed and the impact of pathophysiologies of the visual system on the cortical organisation uncovered. These results are based on investigations at a magnetic field strength of 3 Tesla or less. In a field-strength comparison between 3 and 7 Tesla, it was demonstrated that retinotopic mapping benefits from a magnetic field strength of 7 Tesla. Specifically, the visual areas can be mapped with high spatial resolution for a detailed analysis of the visual field maps. Applications of fMRI-based retinotopic mapping in ophthalmological research hold promise to further our understanding of plasticity in the human visual cortex. This is highlighted by pioneering studies in patients with macular dysfunction or misrouted optic nerves.

Literatur

  • 1 Horton J C, Hoyt W F. The representation of the visual field in human striate cortex. A revision of the classic Holmes map.  Archives of ophthalmology. 1991;  109 816-824
  • 2 Wandell B A, Dumoulin S O, Brewer A A. Visual field maps in human cortex.  Neuron. 2007;  56 366-383
  • 3 Morland A B, Baseler H A, Hoffmann M B et al. Abnormal retinotopic representations in human visual cortex revealed by fMRI.  Acta Psychol (Amst). 2001;  107 229-247
  • 4 Logothetis N K, Pauls J, Augath M et al. Neurophysiological investigation of the basis of the fMRI signal.  Nature. 2001;  412 150-157
  • 5 Engel S A, Rumelhart D E, Wandell B A et al. fMRI of human visual cortex.  Nature. 1994;  369 525
  • 6 Engel S A, Glover G H, Wandell B A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI.  Cereb Cortex. 1997;  7 181-192
  • 7 Sereno M I, Dale A M, Reppas J B et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging.  Science, NY. 1995;  268 889-893
  • 8 DeYoe E A, Carman G J, Bandettini P et al. Mapping striate and extrastriate visual areas in human cerebral cortex.  roceedings of the National Academy of Sciences of the United States of America. 1996;  93 2382-2386
  • 9 Silver M A, Kastner S. Topographic maps in human frontal and parietal cortex.  Trends in cognitive sciences. 2009;  13 488-495
  • 10 Dumoulin S O, Wandell B A. Population receptive field estimates in human visual cortex.  Neuroimage. 2008;  39 647-660
  • 11 Hoffmann M B, Stadler J, Kanowski M et al. Retinotopic mapping of the human visual cortex at a magnetic field strength of 7 T.  Clin Neurophysiol. 2009;  120 108-116
  • 12 Sereno M I, Pitzalis S, Martinez A. Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans.  Science. 2001;  294 1350-1354
  • 13 Hagler D J, Sereno M I. Spatial maps in frontal and prefrontal cortex.  Neuroimage. 2006;  29 567-577
  • 14 Saygin A P, Sereno M I. Retinotopy and Attention in Human Occipital, Temporal, Parietal, and Frontal Cortex.  Cereb Cortex. 2008;  18 (9) 2158-2168
  • 15 Kastner Jr S, DeSimone K, Konen C S et al. Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks.  J Neurophysiol. 2007;  97 3494-3507
  • 16 Konen C S, Kastner S. Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex.  J Neurosci. 2008;  28 8361-8375
  • 17 Schira M M, Tyler C W, Breakspear M et al. The foveal confluence in human visual cortex.  J Neurosci. 2009;  29 9050-9058
  • 18 Duncan R O, Sample P A, Weinreb R N et al. Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss.  Progress in retinal and eye research. 2007;  26 38-56
  • 19 Hood D C, Greenstein V C. Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma.  Progress in retinal and eye research. 2003;  22 201-251
  • 20 Hoffmann M B. Investigating visual function with multivocal visual evoked potentials. In: Lorenz B, Borruat F-X eds, Essentials in ophthalmology: Pediatric ophthalmology, neuro-ophthalmology, genetics.  Berlin-Heidelberg-New York: Springer. 2008;  138-157
  • 21 Wandell B A, Smirnakis S M. Plasticity and stability of visual field maps in adult primary visual cortex.  Nature reviews. 2009;  10 873-884
  • 22 Baseler H A, Gouws A, Morland A B. The Organization of the Visual Cortex in Patients with Scotomata Resulting from Lesions of the Central Retina.  Neuro-Ophthalmology. 2009;  33 149-157
  • 23 Calford M B, Chino Y M, Das A et al. Neuroscience: rewiring the adult brain.  Nature. 2005;  438 E3, discussion E 3-4
  • 24 Sunness J S, Liu T, Yantis S. Retinotopic mapping of the visual cortex using functional magnetic resonance imaging in a patient with central scotomas from atrophic macular degeneration.  Ophthalmology. 2004;  111 1595-1598
  • 25 Baker C I, Peli E, Knouf N et al. Reorganization of visual processing in macular degeneration.  J Neurosci. 2005;  25 614-618
  • 26 Baker C I, Dilks D D, Peli E et al. Reorganization of visual processing in macular degeneration: replication and clues about the role of foveal loss.  Vision research. 2008;  48 1910-1919
  • 27 Schumacher E H, Jacko J A, Primo S A et al. Reorganization of visual processing is related to eccentric viewing in patients with macular degeneration.  Restorative neurology and neuroscience. 2008;  26 391-402
  • 28 Dilks D D, Baker C I, Peli E et al. Reorganization of visual processing in macular degeneration is not specific to the ”preferred retinal locus”.  J Neurosci. 2009;  29 2768-2773
  • 29 Masuda Y, Dumoulin S O, Nakadomari S et al. V1 projection zone signals in human macular degeneration depend on task, not stimulus.  Cereb Cortex. 2008;  18 2483-2493
  • 30 Baseler H A, Brewer A A, Sharpe L T et al. Reorganization of human cortical maps caused by inherited photoreceptor abnormalities.  Nature neuroscience. 2002;  5 364-370
  • 31 Apkarian P, Reits D, Spekreijse H et al. A decisive electrophysiological test for human albinism.  Electroenceph Clin Neurophysiol. 1983;  55 513-531
  • 32 Schmitz B, Käsmann-Kellner B, Schafer T et al. Monocular visual activation patterns in albinism as revealed by functional magnetic resonance imaging.  Human brain mapping. 2004;  23 40-52
  • 33 Hoffmann M B, Lorenz B, Morland A B et al. Misrouting of the optic nerves in albinism: estimation of the extent with visual evoked potentials.  Invest Ophthalmol Vis Sci. 2005;  46 3892-3898
  • 34 Apkarian P, Bour L J, Barth P G et al. Non-decussating retinal-fugal fibre syndrome. An inborn achiasmatic malformation associated with visuotopic misrouting, visual evoked potential ipsilateral asymmetry and nystagmus.  Brain. 1995;  118 1195-1216
  • 35 Victor J D, Apkarian P, Hirsch J et al. Visual function and brain organization in non-decussating retinal-fugal fibre syndrome.  Cereb Cortex. 2000;  10 2-22
  • 36 Muckli L, Naumer M J, Singer W. Bilateral visual field maps in a patient with only one hemisphere.  Proceedings of the National Academy of Sciences of the United States of America. 2009;  106 13034-13039
  • 37 Guillery R W. Neural abnormalities in albinos.  Trends in neurosciences. 1986;  18 364-367
  • 38 Hoffmann M B, Seufert P S, Schmidtborn L C. Perceptual relevance of abnormal visual field representations – static visual field perimetry in human albinism.  The British journal of ophthalmology. 2007;  91 509-513
  • 39 Hoffmann M B, Schmidtborn L C, Morland A B. Abnormale Repräsentationen im visuellen Kortex von Albinismus-Patienten – Hilfsmittel bei der Diagnostik und Modell der kortikalen Selbstorganisation.  Ophthalmologe. 2007;  104 666-673
  • 40 Käsmann-Kellner B, Seitz B. Phänotyp des visuellen Systems bei okulokutanem und okulärem Albinismus.  Ophthalmologe. 2007;  104 648-661
  • 41 dem Hagen E A, Houston G C, Hoffmann M B et al. Pigmentation predicts the shift in the line of decussation in humans with albinism.  Eur J Neurosci. 2007;  25 503-511
  • 42 Schmitz von B, Schaefer T, Krick C M et al. Configuration of the optic chiasm in humans with albinism as revealed by magnetic resonance imaging.  Invest Ophthalmol Vis Sci. 2003;  44 16-21
  • 43 dem Hagen E A, Hoffmann M B, Morland A B. Identifying Human Albinism: A Comparison of VEP and fMRI.  Invest Ophthalmol Vis Sci. 2008;  49 238-249
  • 44 Hoffmann M B, Lorenz von B, Preising M et al. Assessment of cortical visual field representations with multifocal VEPs in control subjects, patients with albinism, and female carriers of ocular albinism.  Invest Ophthalmol Vis Sci. 2006;  47 3195-3201
  • 45 Hoffmann M B, Wolynski B, Meltendorf S et al. Multifocal visual evoked potentials reveal normal optic nerve projections in human carriers of oculocutaneous albinism type 1a.  Invest Ophthalmol Vis Sci. 2008;  49 2756-2764
  • 46 Hoffmann M B, Tolhurst D J, Moore A T et al. Organization of the visual cortex in human albinism.  J Neurosci. 2003;  23 8921-8930
  • 47 Guillery R W, Hickey T L, Kaas J H et al. Abnormal central visual pathways in the brain of an albino green monkey (Cercopithecus aethiops).  The Journal of comparative neurology. 1984;  226 165-183
  • 48 Shmuel A, Yacoub E, Chaimow D et al. Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla.  Neuroimage. 2007;  35 539-552
  • 49 Wolynski B, Schott B H, Kanowski M et al. Visuo-motor integration in humans: cortical patterns of response lateralisation and functional connectivity.  Neuropsychologia. 2009;  47 1313-1322

PD Dr. Michael B. Hoffmann

Klinik für Augenheilkunde, Universität Magdeburg

Leipziger Str. 44

39120 Magdeburg

Phone:  ++ 49/3 91/6 71 35 85

Fax:  ++ 49/3 91/6 71 35 70

Email: michael.hoffmann@med.ovgu.de

    >