Planta Med 2010; 76(8): 796-802
DOI: 10.1055/s-0029-1240743
Natural Product Chemistry
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Phytochemical Investigation of Cycas circinalis and Cycas revoluta Leaflets: Moderately Active Antibacterial Biflavonoids

Abeer Moawad1 , 2 , Mona Hetta2 , Jordan K. Zjawiony1 , Melissa R. Jacob3 , Mohamed Hifnawy4 , Jannie P. J. Marais1 , Daneel Ferreira1
  • 1Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
  • 2Department of Pharmacognosy, School of Pharmacy, Beni Suef University, Beni Suef, Egypt
  • 3National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
  • 4Department of Pharmacognosy, School of Pharmacy, Cairo University, Cairo, Egypt
Further Information

Publication History

received October 30, 2009 revised Dec. 6, 2009

accepted Dec. 6, 2009

Publication Date:
12 January 2010 (online)

Abstract

Chemical examination of the methanolic extract of the leaflets of Cycas circinalis L. led to the isolation of one new biflavonoid, (2S, 2′′S)-2,3,2′′,3′′-tetrahydro-4′,4′′′-di-O-methylamentoflavone (tetrahydroisoginkgetin; 2), and 15 known compounds, 11 of which are reported for the first time from C. circinalis. Chromatographic separation of the chloroform extract of C. revoluta Thunb. leaflets afforded 12 compounds, seven of which are reported for the first time from this species. The isolated compounds from both species include 14 biflavonoids, three lignans, three flavan-3-ols, two flavone-C-glucosides, two nor-isoprenoids, and one flavanone. This is the first report of NMR and CD data of 2,3,2′′,3′′-tetrahydro-4′-O-methyl- and 2,3-dihydro-4′-O-methyl-amentoflavone (6) and (7). The effect of O-methylation on the chemical shifts of the neighboring carbons in the 13C NMR spectra of the dihydro- and tetrahydro-amentoflavone skeletons provides a tool to identify the location of the methoxy groups. Compounds 2, 6, and 18 displayed moderate antibacterial activity against Staphylococcus aureus (IC50 values of 3.9, 9.7, and 8.2 µM, respectively) and methicillin-resistant S. aureus (MRSA; IC50 values of 5.9, 12.5, and 11.5 µM, respectively).

References

  • 1 Duke J A. CRC handbook of medicinal herbs. Boca Raton, Florida; CRC Press 1985
  • 2 Jones D. Cycads of the World. Washington D.C.; Simthsonian Institution Press 1993
  • 3 Duke J A, Ayensu E S. Medicinal plants of China, 1st edition. Algonac, Michigan; Reference Publications 1985
  • 4 Chopra R N, Nayar S L, Chopra I C. Glossary of Indian medicinal plants (including the supplement). New Delhi; Council of Scientific and Industrial Research 1986
  • 5 Kowalska M T, Itzhak Y, Puett D. Presence of aromatase inhibitors in Cycads.  J Ethnopharmacol. 1995;  47 113-116
  • 6 Chang H O, Brownson D M, Mabry T J. Screening for non-protein amino acids in seeds of the Guam cycad, Cycas circinalis, by an improved GC-MS method.  Planta Med. 1995;  61 66-70
  • 7 Whiting M G. Neurotoxicity of cycads, an annotated bibliography for the years 1929–1989.  Lyonia. 1989;  2 201-270
  • 8 Li C J, Brownson M D, Mabry T, Perera C, Bell E A. Nonprotein amino acids from seeds of Cycas circinalis and Phaseolus vulgaris.  Phytochemistry. 1996;  42 443-445
  • 9 Varshney A K, Mah T, Khan N U, Rahman W, Hwa C W, Okigawa M, Kawano N. Biflavones from Cycas revoluta, C. circinalis, and C. rumphii.  Indian J Chem. 1973;  11 1209-1214
  • 10 Wallace J W. A survey for benzoic and cinnamic acids of the Cycadaceae.  Am J Bot. 1972;  59 1-4
  • 11 Yao X, Wang N, Fan M, Zheng J, Wu L, Liu H, Ding A, Gao H, Dai Y. Application of flavone derivatives as antioxidation and anti-hypoxia drug or food and their preparation. Faming Zhuanli Shenqing Gongkai Shuomingshu 2009: CN 101361733 A 20090211. 
  • 12 NCCLS .Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard M27-A2. Wayne; National Committee on Clinical Laboratory Standards 2002: 22 (15)
  • 13 NCCLS .Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, seventh edition M7-A7. Wayne; National Committee on Clinical Laboratory Standards 2006: 26 (2)
  • 14 NCCLS .Susceptibility testing of Mycobacteria, Nocardia, and other aerobic Actinomycetes; tentative standard–approved standard, M24-A. Wayne; National Committee on Clinical Laboratory Standards 2003: 23 (18)
  • 15 NCCLS .Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, M38-A. Wayne; National Committee on Clinical Laboratory Standards 2002: 22 (16)
  • 16 Franzblau S G, Witzig R S, McLaughlin J C, Torres P, Madico G, Hernandez A, Degnan M T, Cook M B, Quenzer V K, Ferguson R M, Gilman R H. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay.  J Clin Microbiol. 1998;  36 362-366
  • 17 Park K E, Kim Y A, Jung H A, Lee H J, Ahn J W, Lee B J, Soe Y. Three norisoprenoids from the brown alga Sargassum thunbergii.  J Korean Chem Soc. 2004;  48 394-398
  • 18 Kimura J, Maki N. New loliolide derivatives from the brown alga Undaria pinnatifida.  J Nat Prod. 2002;  65 57-58
  • 19 Ibrahim A R S. Sulfation of naringenin by Cunninghamella elegans.  Phytochemistry. 2000;  53 209-212
  • 20 Cheng K T, Hsu F L, Chen S H, Hsieh P K, Huang H S, Lee C K, Lee M H. New constituent from Podocarpus macrophyllus var. macrophyllus shows anti-tyrosinase effect and regulates tyrosinase-related proteins and mRNA in human epidermal melanocytes.  Chem Pharm Bull. 2007;  55 757-761
  • 21 Seidel V, Bailleul F, Waterman P G. Novel oligorhamnosides from the stem bark of Cleistopholis glauca.  J Nat Prod. 2000;  63 6-11
  • 22 Markham K R, Sheppard C, Geiger H. 13C NMR studies of some naturally occurring amentoflavone and hinokiflavone biflavonoids.  Phytochemistry. 1987;  26 3335-3337
  • 23 Silva G L, Chai H, Gupta M P, Farnsworth N R, Cordell G A, Pezzuto J M, Beecher C W W, Kinghorn A D. Cytotoxic biflavonoids from Selaginella willdenowii.  Phytochemistry. 1995;  40 129-134
  • 24 Cren-Olivé C, Wieruszeski J M, Maes E, Rolando C. Catechin and epicatechin deprotonation followed by 13C NMR.  Tetrahedron Lett. 2002;  43 4545-4549
  • 25 Foo L Y, Lu Y, Molan A L, Woodfield D R, McNabb W C. The phenols and prodelphinidins of white clover flowers.  Phytochemistry. 2000;  54 539-548
  • 26 Tanaka T, Kondou K, Kouno I. Oxidation and epimerization of epigallocatechin in banana fruits.  Phytochemistry. 2000;  53 311-316
  • 27 Sato S, Akiya T, Nishizawa H, Suzuki T. Total synthesis of three naturally occurring 6, 8-di-C-glycosylflavonoids: phloretin, naringenin, and apigenin bis-C-β-D-glucosides.  Carbohydr Res. 2006;  341 964-970
  • 28 Markham K R, Webby R F, Vilain C. 7-O-methyl-(2R:3R)-dihydroquercetin 5-O-β–glucoside and other flavonoids from Podocarpus nivalis.  Phytochemistry. 1984;  23 2049-2052
  • 29 Pauli G F, Junior P. Phenolic glycosides from Adonis aleppica.  Phytochemistry. 1995;  38 1245-1250
  • 30 Ahmed I, Ishratullah K, Ilyas M, Rahman W, Seligmann O, Wagner H. Tetrahydroamentoflvone from nuts of Semecarpus prainii.  Phytochemistry. 1981;  20 1169-1170
  • 31 Suarez A I, Beth D M, Monache F D, Compagnone R S. Biflavonoids from Podocalyx loranthoides.  Fitoterapia. 2003;  74 473-475
  • 32 Xie L H, Akao T, Hamasaki K, Deyama T, Hattori M. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol.  Chem Pharm Bull. 2003;  51 508-515
  • 33 Lin L C, Chou C J. Three new biflavonoids from Selaginella delicatula.  Chin Pharm J (Taipei). 2000;  52 211-218
  • 34 Rani M S, Rao C V, Gunasekar D, Blond A, Bodo B. A biflavonoid from Cycas beddomei.  Phytochemistry. 1998;  47 319-321
  • 35 Jutiviboonsuk A, Zhang H, Tan G T, Ma C, Hung N V, Cuong N M, Bunyapraphatsara N, Soejarto D D, Fong H H S. Bioactive constituents from roots of Bursera tonkinensis.  Phytochemistry. 2005;  66 2745-2751
  • 36 Calis I, Kuruüzüm-Uz A, Lorenzetto P A, Ruedi P. (6S)-hydroxy-3-oxo-α-ionol glucosides from Capparis spinosa fruits.  Phytochemistry. 2002;  59 451-457
  • 37 Mabry T J, Markham K R, Thomas M B. The systematic identification of flavonoids. Heidelberg, New York; Springer-Verlag 1970: 354
  • 38 Gaffield W. Circular dichroism, optical rotatory dispersion and absolute configuration of flavanones, 3-hydroxyflavanones and their glycosides: determination of aglycone chirality in flavanone glycosides.  Tetrahedron. 1970;  26 4093-4108
  • 39 Ding Y, Li X C, Ferreira D. Theoretical calculation of electronic circular dichroism of the rotationally restricted 3,8′′-biflavonoid morelloflavone.  J Org Chem. 2007;  72 9010-9017
  • 40 Chen J Y, Chen J M, Xiao P G, Wu N, Lu Y. Crystal structure of loliolide [5,6,7α-tetrahydro-6-hydroxy-4,4,7α-trimethyl-2(4H)-benzofuranone].  Jiegou Huaxue. 1997;  16 335-337
  • 41 Jong T T, Jean M Y. Constituents of Houttuyniae cordata and the crystal structure of vomifoliol.  J Chin Chem Soc (Taipei, Taiwan). 1993;  40 399-402

Dr. Daneel Ferreira

Department of Pharmacognosy
School of Pharmacy
University of Mississippi

University, MS 38677

USA

Phone: + 1 66 29 15 70 26

Fax: + 1 66 29 15 69 75

Email: dferreir@olemiss.edu

>