Pharmacopsychiatry 2009; 42(2): 41-50
DOI: 10.1055/s-0028-1085444
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Distinct Haplogenotypes of the Dopamine D2 Receptor Gene are Associated with Non-smoking Behaviour and Daily Cigarette Consumption

C. Wernicke 1 , J. Reese 1 , A. Kraschewski 1 , G. Winterer 2 , H. Rommelspacher 1 , J. Gallinat 3
  • 1Charité – Universitätsmedizin Berlin, Klinische Neurobiologie, Klinik für Psychiatrie and Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
  • 2Heinrich-Heine-Universität Düsseldorf, Klinik für Psychiatrie and Psychotherapie, Düsseldorf, Germany
  • 3Charité – Universitätsmedizin Berlin, Klinik für Psychiatrie and Psychotherapie, Campus Charité Mitte, Berlin, Germany
Further Information

Publication History

received 14.04.2008 revised 11.07.2008

accepted 14.07.2008

Publication Date:
23 March 2009 (online)

Abstract

Introduction: Dopamine systems in the CNS are decisively implicated in the motivational and rewarding properties of nicotine. The dopamine D2 receptor (DRD2) plays a pivotal role by promoting these properties, making this gene a good candidate for association studies. Several single nucleotide polymorphisms (SNPs) have been described to influence the expression of DRD2. The amount of expressed DRD2 will finally be the result of the sum and/or interaction of several functional polymorphisms located at the respective DNA strand forming a distinct haplotype. Thus, the knowledge about the distribution of the haplotypes in groups of subjects, differing by their smoking behaviour, would result in a better understanding of the putative associations compared to single SNP investigations.

Methods: 218 healthy subjects grouped for being never smokers, former smokers, and current smokers, were genotyped for the following polymorphisms: −141 ins(I)/del(D), STRPi2 (intron 2), C957T (exon 7), A1385G (exon 8), and TaqIA. Regular immoderate alcohol consumption was an exclusion criterion.

Results: In the total study group four haplotypes represented 90% of the haplotypes, with I-T-A-A2, I-C-G-A2, I-C-A-A1, and D-C-G-A2 accounting for around 50%, 20%, 10%, and 10%, respectively. I-C-G-A2 homozygosity was significantly higher in never smokers compared to ever smokers (current+former smokers) (χ2=36.585, df=1, p<0.001). There was a significant difference in the daily cigarette consumption of current smokers with respect to the haplogenotype (χ2=3211.9, df=18, p=0.003). Current smokers with a haplogenotype containing at least one I-T-A-A2 allele showed a significant smaller daily cigarette consumption (15.1±7.93) compared to subjects with a genotype not bearing this allele (20.1±6.79; T=−2.06, df=61, p=0.044).

Conclusion: We have demonstrated an association of the distinct haplogenotype I/I-C/C-G/G-A2/A2 of the DRD2 gene with a reduced risk to become a smoker in Caucasians of German origin. This protection may result from an association of this haplotype with a reduced activation of the dopaminergic neurotransmission by nicotine. Moreover, in current smokers, higher daily cigarette consumption is associated with those haplogenotypes that do not contain the I-T-A-A2 haplotype.

References

  • 1 Albert PR. Heterologous expression of G protein-linked receptors in pituitary and fibroblast cell lines.  Vitam Horm. 1994;  48 59-109 , [Review]
  • 2 American Cancer Society .Cancer facts and figures Atlanta. GA: American Cancer Society 2004
  • 3 Arinami T, Gao M, Hamaguchi H. et al . A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia.  Hum Mol Genet. 1997;  6 577-582
  • 4 Bardel C, Danjean V, Génin E. ALTree: association detection and localization of susceptibility sites using haplotype phylogenetic trees.  Bioinformatics applications note. 2006;  22 1402-1403
  • 5 Barrett JC, Try B, Maller J. et al . Haploview: analysis and visualization of LD and haplotype maps.  Bioinformatics. 2005;  21 263-265
  • 6 Brody AL, Olmstead RE, London ED. et al . Smoking-induced ventral striatum dopamine release.  Am J Psychiatry. 2004;  161 1211-1218
  • 7 Carmelli D, Swan GE, Robinette D. et al . Genetic influence on smoking – a study of male twins.  N Engl J Med. 1992;  327 829-833
  • 8 Center for Disease Control and Prevention . Annual smoking-attributable mortality, years of potentional life cost, and economic costs – United States, 1995–1999.  Morbidity and Mortality Weekly Report. 2002;  51 300-303
  • 9 Civelli O, Bunzow JR, Grandy DK. Molecular diversity of the dopamine receptors.  Annu Rev Pharmacol Toxicol. 1993;  33 281-307 , [Review]
  • 10 Corrigall WA, Coen KM, Adamson KL. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area.  Brain Res. 1994;  653 278-284
  • 11 Chiara G Di. Role of dopamine in the behavioural actions of nicotine related to addiction.  Eur J Pharmacol. 2000;  393 295-314 , [Review]
  • 12 Duan J, Wainwright MS, Comeron JM. et al . Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor.  Hum Mol Genet. 2003;  12 205-216
  • 13 Durstewitz D. A few important points about dopamine's role in neural network dynamics.  Pharmacopsychiatry. 2006;  39 ((Suppl 1)) S72-S75
  • 14 Finckh U, Rommelspacher H, Kuhn S. et al . Influence of the dopamine D2 receptor (DRD2) genotype on neuroadaptive effects of alcohol and the clinical outcome of alcoholism.  Pharmacogenetics. 1997;  7 271-281
  • 15 Gallinat J, Mulert C, Bajbouj M. et al . Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia.  Neuroimage. 2002;  17 110-127
  • 16 Gallinat J, Meisenzahl E, Jacobsen LK. et al . Smoking and structural brain deficits: a volumetric MR investigation.  Eur J Neurosci. 2006;  24 1744-1750
  • 17 Gallinat J, Lang UE, Jacobsen LK. et al . Abnormal hippocampal neurochemistry in smokers: evidence from proton magnetic resonance spectroscopy at 3T.  J Clin Psychopharmacol. 2007;  27 80-84
  • 18 Gallinat J, Schubert F. Regional cerebral glutamate concentrations and chronic tobacco consumption.  Pharmacopsychiatry. 2007;  40 64-67
  • 19 Gardner EL. Brain reward mechanisms. In: Lowinson JH, Ruiz P, Millman RB, Langrod JG, eds. Substance abuse: A Comprehensive Textbook, 4th Ed. Philadelphia: Lippincott Williams and Wilkins 2005: 48-97
  • 20 Gelernter J, Yu Y, Weiss R. et al . Haplotype spanning TTC12 and ANKK1, flanked by the DRD2 and NCAM1 loci, is strongly associated to nicotine dependence in two distinct American populations.  Hum Mol Genet. 2006;  15 3498-3507
  • 21 Gingrich JA, Caron MG. Recent advances in the molecular biology of dopamine receptors.  Annu Rev Neurosci. 1993;  16 299-321 , [Review]
  • 22 Heath AC, Martin NG. Genetic models for the natural history of smoking: evidence for a genetic influence on smoking persistence.  Addict Behav. 1993;  18 19-34 , [Review]
  • 23 Heatherton TF, Kozlowski LT, Frecker RC. et al . The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire.  Br J Addict. 1991;  86 1119-1127
  • 24 Hirvonen M, Laakso A, Någren K. et al . C957T polymorphism of the dopamine D2 receptor (DRD2) gene affects striatal DRD2 availability in vivo.  Mol Psychiatry. 2004;  9 1060-1051 , Erratum in: Mol Psychiatry 2005;10: 889
  • 25 Hwang R, Shinkai T, Luca V De. et al . Association study of 12 polymorphisms spanning the dopamine D(2) receptor gene and clozapine treatment response in two treatment refractory/intolerant populations.  Psychopharmacology (Berl). 2005;  181 179-187
  • 26 Ikemoto S, Glazier BS, Murphy JM. et al . Role of dopamine D1 and D2 receptors in the nucleus accumbens in mediating reward.  J Neurosci. 1997;  17 8580-8587
  • 27 Imperato A, Mulas A, Chiara G Di. Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats.  Eur J Pharmacol. 1986;  132 337-338
  • 28 Jacobsen LK, Pugh KR, Mencl WE. et al . C957T polymorphism of the dopamine D2 receptor gene modulates the effect of nicotine on working memory performance and cortical processing efficiency.  Psychopharmacology (Berl). 2006;  188 530-540
  • 29 Jönsson EG, Nöthen MM, Grünhage F. et al . Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers.  Mol Psychiatry. 1999;  4 290-296
  • 30 Kendler KS, Neale MC, MacLean CJ. et al . Smoking and major depression. A causal analysis.  Arch Gen Psychiatry. 1993;  50 36-43
  • 31 Khan ZU, Mrzljak l, Gutierrez A. et al . Prominence of the dopamine D2 short isoform in dopaminergic pathways.  Proc Natl Acad Sci USA. 1998;  95 7731-7736
  • 32 Kidd KK, Morar B, Castiglione CM. et al . A global survey of haplotype frequencies and linkage disequilibrium at the DRD2 locus.  Hum Genet. 1998;  103 211-227
  • 33 Kirsch P, Reuter M, Mier D. et al . Imaging gene-substance interactions: the effect of the DRD2 TaqIA polymorphism and the dopamine agonist bromocriptine on the brain activation during the anticipation of reward.  Neurosci Lett. 2006;  25; 405 196-201
  • 34 Laakso A, Pohjalainen T, Bergman J. et al . The A1 allele of the human D2 dopamine receptor gene is associated with increased activity of striatal L-amino acid decarboxylase in healthy subjects.  Pharmacogenet Genomics. 2005;  15 387-391
  • 35 Lang UE, Hellweg R, Gallinat J. Association of BDNF serum concentrations with central serotonergic activity: evidence from auditory signal processing.  Neuropsychopharmacology. 2005;  30 1148-1153
  • 36 Lang UE, Sander T, Lohoff FW. et al . Association of the met66 allele of brain-derived neurotrophic factor (BDNF) with smoking.  Psychopharmacology (Berl). 2007;  190 433-439
  • 37 Lerman C, Jepson C, Wileyto EP. et al . Role of functional genetic variation in the dopamine D2 receptor (DRD2) in response to bupropion and nicotine replacement therapy for tobacco dependence: results of two randomized clinical trials.  Neuropsychopharmacology. 2006;  31 231-242
  • 38 Leuner K, Müller WE. The complexity of the dopaminergic synapses and their modulation by antipsychotics.  Pharmacopsychiatry. 2006;  39 ((Suppl 1)) S15-S20
  • 39 Li MD, Cheng R, Ma JZ. et al . A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins.  Addiction. 2003;  98 23-31 , [Review]
  • 40 Li MD, Ma JZ, Beuten J. Progress in searching for susceptibility loci and genes for smoking-related behaviour.  Clin Genet. 2004;  66 382-392 , [Review]
  • 41 Lucht MJ, Kuehn KU, Schroeder W. et al . Influence of the dopamine D2 receptor (DRD2) exon 8 genotype on efficacy of tiapride and clinical outcome of alcohol withdrawal.  Pharmacogenetics. 2001;  11 647-653
  • 42 Luo HR, Hou ZF, Wu J. et al . Evolution of the DRD2 gene haplotype and its association with alcoholism in Mexican Americans.  Alcohol. 2005;  36 117-125
  • 43 Mercuri NB, Saiardi A, Bonci A. et al . Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice.  Neuroscience. 1997;  79 323-327
  • 44 Miller SA, Dykes S, Plesky HF. A simple salting out procedure for extracting DNA from human nucleated cells.  Nucleic Acids Res. 1988;  16 1215
  • 45 Montmayeur JP, Guiramand J, Borelli E. Preferential coupling between dopamine D2 receptors and G-proteins.  Mol Endo. 1993;  163 161-170
  • 46 Morton LM, Wang SS, Bergen AW. et al . DRD2 genetic variation in relation to smoking and obesity in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.  Pharmacogenet Genomics. 2006;  16 901-910
  • 47 Nakajima S, Liu X, Lau CL. Synergistic interaction of D1 and D2 dopamine receptors in the modulation of the reinforcing effect of brain stimulation.  Behav Neurosci. 1993;  107 161-165
  • 48 Neuhaus A, Bajbouj M, Kienast T. et al . Persistent dysfunctional frontal lobe activation in former smokers.  Psychopharmacology (Berl). 2006;  186 191-200
  • 49 Neville MJ, Johnstone EC, Walton RT. Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1.  Hum Mutat. 2004;  23 540-545
  • 50 Noble EP, Blum K, Ritchie T. et al . Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism.  Arch Gen Psychiatry. 1991;  48 648-654
  • 51 Noble EP, Gottschalk LA, Fallon JH. et al . D2 dopamine receptor polymorphism and brain regional glucose metabolism.  Am J Med Genet. 1997;  74 162-166
  • 52 Noble EP. The DRD2 gene in psychiatric and neurological disorders and its phenotypes.  Pharmacogenomics. 2000;  1 309-333 , [Review]
  • 53 Pohjalainen T, Rinne JO, Någren K. et al . The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers.  Mol Psychiatry. 1998;  3 256-260
  • 54 Pontieri FE, Tanda G, Orzi F. et al . Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs.  Nature. 1996;  382 255-257
  • 55 Rein M. Funktionelle Analyse der 3′ untranslatierten Region des Dopamin D2 Rezeptor Gens. Dissertationsschrift. Institut für Humangenetik, Universitätsklinikum Hamburg Eppendorf 2008
  • 56 Rohde K, Fürst R. Haplotyping and estimation of haplotype frequencies for closely linked biallelic multilocus genetic phenotypes including nuclear family information.  Hum Mutat. 2001;  17 289-295
  • 57 Thompson J, Thomas N, Singleton A. et al . D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele.  Pharmacogenetics. 1997;  7 479-484
  • 58 Usiello A, Baik JH, Rouge-Pont F. et al . Distinct functions of the two isoforms of dopamine D2 receptors.  Nature. 2000;  408 199-203
  • 59 Wise RA, Gardner EL. Functional anatomy of substance-related disorders. In: D’haenen H, den Boer JA, Willner P, eds. Biological Psychiatry. Wiley, New York 2002: 509-522
  • 60 Zhang Y, Bertolino A, Fazio L. et al . Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory.  Proc Natl Acad Sci USA. 2007;  104 20552-20557

Correspondence

Dr. rer. nat. C. Wernicke

Charité – Universitätsmedizin Berlin

Campus Benjamin Franklin

Klinik für Psychiatrie und Psychotherapie

Bereich Klinische Neurobiologie

Eschenallee 3

14050 Berlin

Germany

Phone: +49/30/8445 82 57

Fax: +49/30/8445 82 44

Email: catrin.wernicke@charite.de

    >