Planta Med 2023; 89(11): 1034-1044
DOI: 10.1055/a-2100-3542
Biological and Pharmacological Activity
Reviews

Polyphenols for Preventing Dental Erosion in Pre-clinical Studies with in situ Designs and Simulated Acid Attack

Isabelly de Carvalho Leal
1   Department of Clinical Dentistry, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
,
Cibele Sales Rabelo
1   Department of Clinical Dentistry, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
,
Mary Anne Sampaio de Melo
2   Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, United States
,
Paulo Goberlânio de Barros Silva
3   Christus University Centre, Fortaleza, Brazil
,
Fábio Wildson Gurgel Costa
1   Department of Clinical Dentistry, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
,
1   Department of Clinical Dentistry, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
› Author Affiliations
The Brazilian National Council for Scientific and Technological Development (CNPq) provided a PQ fellowship in category 2 to Dr. Fábio Costa (process number: 315479/2021-3). Dr. Isabelly Leal and Dr. Cibele Rabelo were supported by a research scholarship (CAPES – Brazilian Coordination for the Improvement of Higher Education Personnel).

Abstract

Dental erosion is a chemical process characterized by acid dissolution of dental hard tissue, and its etiology is multifactorial. Dietary polyphenols can be a strategy for dental erosion management, collaborating to preserve dental tissues through resistance to biodegradation. This study describes a comprehensive review to interpret the effects of polyphenols on dental erosion of pre-clinical models with in situ designs and simulated acid attacks on enamel and dentin samples. We aim to evaluate evidence about Polyphenolsʼ effects in the type of dental substrate, parameters of erosive cycling chosen in the in situ models, and the possible mechanisms involved. An evidence-based literature review was conducted using appropriate search strategies developed for main electronic databases (PubMed, Scopus, Web of Science, LILACS, EMBASE, LIVIVO, CINAHL, and DOSS) and gray literature (Google Scholar). The Joanna Briggs Institute checklist was used to evaluate the quality of the evidence. From a total of 1900 articles, 8 were selected for evidence synthesis, including 224 specimens treated with polyphenols and 224 control samples. Considering the studies included in this review, we could observe that polyphenols tend to promote a reduction in erosive and abrasive wear compared to control groups. However, as the few studies included have a high risk of bias with different methodologies and the estimated effect size is low, this conclusion should not be extrapolated to clinical reality.

Supporting Information



Publication History

Received: 26 February 2023

Accepted after revision: 12 May 2023

Accepted Manuscript online:
25 May 2023

Article published online:
29 June 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Teixeira DNR, Thomas RZ, Soares PV, Cune MS, Gresnigt MM, Slot DE. Prevalence of noncarious cervical lesions among adults: A systematic review. J Dent 2020; 95: 103285 DOI: 10.1016/j.jdent.2020.103285.
  • 2 Teixeira DNR, Zeola LF, Machado AC, Gomes RR, Souza PG, Mendes DC, Soares PV. Relationship between noncarious cervical lesions, cervical dentin hypersensitivity, gingival recession, and associated risk factors: a cross-sectional study. J Dent 2018; 76: 93-97 DOI: 10.1016/j.jdent.2018.06.017.
  • 3 Zero DT, Lussi A. Erosion–chemical and biological factors of importance to the dental practitioner. Int Dent J 2005; 55: 285-290 DOI: 10.1111/j.1875-595x.2005.tb00066.x.
  • 4 Imfeld T. Dental erosion: Definition, classification and links. Eur J Oral Sci 1996; 104: 151-155 DOI: 10.1111/j.1600-0722.1996.tb00063.x.
  • 5 Passos VF, Melo MA, Park J, Strassler HE. Current concepts and best evidence on strategies to prevent dental erosion. Compend Contin Educ Dent 2019; 40: 80-86
  • 6 Carvalho TS, Colon P, Ganss C, Huysmans MC, Lussi A, Schlüter N, Schmalz G, Shellis RP, Tveit AB, Wiegand A. Consensus report of the European Federation of Conservative Dentistry: Erosive tooth wear–diagnosis and management. Clin Oral Investig 2015; 19: 1557-1561 DOI: 10.1007/s00784-015-1511-7.
  • 7 Vitiello F, Tosco V, Monterubbianesi R, Orilisi G, Gatto ML, Sparabombe S, Memé L, Mengucci P, Putignano A, Orsini G. Remineralization efficacy of four remineralizing agents on artificial enamel lesions: SEM-EDS investigation. Materials (Basel) 2022; 15: 4398 DOI: 10.3390/ma15134398.
  • 8 Bedran-Russo AK, Pauli GF, Chen SN, McAlpine J, Castellan CS, Phansalkar RS, Aguiar TR, Vidal CMP, Napotilano JG, Nam JW, Leme AA. Dentin biomodification: Strategies, renewable resources and clinical applications. Dent Mater 2014; 30: 62-76 DOI: 10.1016/j.dental.2013.10.012.
  • 9 Bedran-Russo AKB, Castellan CS, Shinohara MS, Hassan L, Antunes A. Characterization of biomodified dentin matrices for potential preventive and reparative therapies. Acta Biomater 2011; 7: 1735-1741 DOI: 10.1016/j.actbio.2010.12.013.
  • 10 Bedran-Russo AKB, Vidal CM, Dos Santos PH, Castellan CS. Long‐term effect of carbodiimide on dentin matrix and resin‐dentin bonds. J Biomed Mater Res B Appl Biomater 2010; 94: 250-255 DOI: 10.1002/jbm.b.31649.
  • 11 Beckman CH. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants?. Physiol Mol Plant Pathol 2000; 57: 101-110 DOI: 10.1006/pmpp.2000.0287.
  • 12 Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009; 2: 270-278 DOI: 10.4161/oxim.2.5.9498.
  • 13 Aguiar TR, Vidal CMP, Phansalkar RS, Todorova I, Napolitano JG, McAlpine JB, Chen SN, Pauli GF, Bedran-Russo AK. Dentin biomodification potential depends on polyphenol source. J Dent Res 2014; 93: 417-422 DOI: 10.1177/0022034514523783.
  • 14 Broyles AC, Pavan S, Bedran-Russo AK. Effect of dentin surface modification on the microtensile bond strength of self‐adhesive resin cements. J Prosthodont 2013; 22: 59-62 DOI: 10.1111/j.1532-849X.2012.00890.x.
  • 15 Dos Santos PH, Karol S, Bedran-Russo AK. Long-term nano-mechanical properties of biomodified dentin–resin interface components. J Biomech 2011; 44: 1691-1694 DOI: 10.1016/j.jbiomech.2011.03.030.
  • 16 Liu Y, Chen M, Yao X, Xu C, Zhang Y, Wang Y. Enhancement in dentin collagenʼs biological stability after proanthocyanidins treatment in clinically relevant time periods. Dent Mater 2013; 29: 485-492 DOI: 10.1016/j.dental.2013.01.013.
  • 17 Pavan S, Xie Q, Hara AT, Bedran-Russo AK. Biomimetic approach for root caries prevention using a proanthocyanidin-rich agent. Caries Res 2011; 45: 443-447 DOI: 10.1159/000330599.
  • 18 Kato MT, Leite AL, Hannas AR, Buzalaf MAR. Gels containing MMP inhibitors prevent dental erosion in situ . J Dent Res 2010; 89: 468-472 DOI: 10.1177/0022034510363248.
  • 19 Shellis RP, Ganss C, Ren Y, Zero DT, Lussi A. Methodology and models in erosion research: Discussion and conclusions. Caries Res 2011; 45: 69-77 DOI: 10.1159/000325971.
  • 20 Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app forsystematic reviews. Syst Rev 2016; 5: 210 DOI: 10.1186/s13643-016-0384-4.
  • 21 Soveral M, Machado V, Botelho J, Mendes JJ, Manso C. Effect of resin infiltration on enamel: A systematic review and meta-analysis. J Funct Biomater 2021; 12: 48 DOI: 10.3390/jfb12030048.
  • 22 Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int J Surg 2021; 88: 105906 DOI: 10.1136/bmj.n71.
  • 23 Petti S, Scully C. Polyphenols, oral health and disease: A review. J Dent 2009; 37: 413-423 DOI: 10.1016/j.jdent.2009.02.003.
  • 24 Sánchez MC, Ribeiro-Vidal H, Esteban-Fernández A, Bartolomé B, Figuero E, Moreno-Arribas MV, Sanz M, Herrera D. Antimicrobial activity of red wine and oenological extracts against periodontal pathogens in a validated oral biofilm model. BMC Complement Altern Med 2019; 19: 145 DOI: 10.1186/s12906-019-2533-5.
  • 25 Fibach E, Ginsburg I. The antioxidant effect of fermented papaya preparation in the oral cavity. Phytother Res 2015; 29: 1317-1322 DOI: 10.1002/ptr.5381.
  • 26 Shavandi A, Bekhit AEDA, Saeedi P, Izadifar Z, Bekhit AA, Khademhosseini A. Polyphenol uses in biomaterials engineering. Biomaterials 2018; 167: 91-106 DOI: 10.1016/j.biomaterials.2018.03.018.
  • 27 Spencer JP, Abd El Mohsen MM, Minihane AM, Mathers JC. Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr 2008; 99: 12-22 DOI: 10.1017/S0007114507798938.
  • 28 Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl 2011; 50: 586-621 DOI: 10.1002/anie.201000044.
  • 29 Namita P, Mukesh R, Vijay KJ. Camellia sinensis (green tea): A review. Global J Pharmacol 2012; 6: 52-59
  • 30 Tariq M, Naveed A, Barkat Ali K. The morphology, characteristics and medicinal properties of ʼCamellia sinensisʼ tea. J Med Plant Res 2010; 4: 2028-2033
  • 31 Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea-a review. J Am Coll Nutr 2006; 25: 79-99 DOI: 10.1080/07315724.2006.10719518.
  • 32 Wu AH, Yu MC. Tea, hormone-related cancers and endogenous hormone levels. Mol Nutr Food Res 2006; 50: 160-169 DOI: 10.1002/mnfr.200500142.
  • 33 Arab L, Liu W, Elashoff D. Green and black tea consumption and risk of stroke. A meta- analysis. Stroke 2008; 40: 1786-1792 DOI: 10.1161/STROKEAHA.108.538470.
  • 34 Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y. Green tea consumption and mortality due to cardiovascular disease, cancer and all causes in Japan: The Ohsaki Study. JAMA 2006; 296: 1255-1265 DOI: 10.1001/jama.296.10.1255.
  • 35 Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI. The green tea polyphenol (−)-Epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 2001; 70: 603-614 DOI: 10.1016/s0024-3205(01)01438-2.
  • 36 Levites Y, Amit T, Mandel S, Youdim MB. Neuroprotection and neurorescue against A beta toxicity and PKC-dependent release Of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB J 2003; 17: 952-954 DOI: 10.1096/fj.02-0881fje.
  • 37 Jeon SY, Bae K, Seong YH, Song KS. Green tea catechins as a BACE1 (beta-secretase) inhibitor. Bioorg Med Chem Lett 2003; 13: 3905-3908 DOI: 10.1016/j.bmcl.2003.09.018.
  • 38 Onisi M, Shimura N, Nakamura C, Sato M. A field test on the caries preventive effect of tea drinking. J Dent Health 1981; 31: 13-19
  • 39 Sakanaka S, Kim M, Taniguchi M, Yamamoto T. Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a cariogenic bacterium. Agric Biol Chem 1989; 53: 2307-2311
  • 40 Sakanaka S, Sate T, Kim M, Yamamoto T. Inhibitory effects of green tea polyphenols on glucan synthesis and cellular adherence of cariogenic streptococci. Agric Biol Chem 1990; 54: 2925-2929
  • 41 Otake S, Makimura M, Kuroki T, Nishihara Y, Hirasawa M. Anticaries effects of polyphenolic compounds from Japanese Green tea. Caries Res 1991; 25: 438-443 DOI: 10.1159/000261407.
  • 42 Sakanaka S. Green tea polyphenols for prevention of dental caries. In: Yamamoto T, Juneja LR, Chu DC, Kim M. eds. Hemical Applications of Green Tea. Boca Raton, FL: CRC Press; 1997: 87-101
  • 43 Oosthuizen CB, Namrita L. Euclea Natalensis. Underexplored Medicinal Plants from Sub-Saharan Africa. Academic Press 2020; 16: 111-116
  • 44 Watt JM, Breyer-Brandwijk MG. The Medicinal and Poisonous Plants of Southern Africa and Eastern Africa: Being an Account of their Medicinal and other Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animal. Nature 1933; 132: 336
  • 45 Lall N, Weiganand O, Hussein AA, Meyer JJM. Antifungal activity of naphthoquinones and triterpenes isolated from the root bark of Euclea natalensis. S Afr J Bot 2006; 72: 579-583
  • 46 Maroyi A. Review of ethnomedicinal uses, phytochemistry and pharmacological properties of Euclea natalensis A. DC. Molecules 2017; 22: 2128
  • 47 Tannock J. Naphthaquinones from Diospyros and Euclea species. Phytochemistry 1973; 12: 2066-2067 DOI: 10.1016/S0031-9422(00)91546-2.
  • 48 van der Kooy F, Meyer JJM, Lall N. Antimycobacterial activity and possible mode of action of newly isolated neodiospyrin and other naphthoquinones from Euclea natalensis. S Afr J Bot 2006; 72: 349-352 DOI: 10.1016/j.sajb.2005.09.009.
  • 49 Lall N, Meyer JJM. Antibacterial activity of water and acetone extracts of the roots of Euclea natalensis. J Ethnopharmacol 2000; 72: 313-316 DOI: 10.1016/s0378-8741(00)00231-2.
  • 50 Lall N, Kumar V, Meyer D, Gasa N, Hamilton C, Matsabisa M, Oosthuizen CB. In vitro and in vivo antimycobacterial, hepatoprotective and immunomodulatory activity of Euclea natalensis and its mode of action. J Ethnopharmacol 2016; 194: 740-748 DOI: 10.1016/j.jep.2016.10.060.
  • 51 Rees AR. Evidence of the African origin of the oil palm. Principles 1965; 9: 30-36
  • 52 Hadi S, Ahmad D, Akande FB. Determination of the bruise indexes of oil palm fruits. J Food Eng 2009; 95: 322-326
  • 53 Chandrasekharan N, Sundram K, Basiron Y. Changing nutritional and health perspectives on palm oil. Brunei Int Med J 2000; 2: 417-427
  • 54 Sambanthamurthi R, Sundram K, Tan YA. Chemistry and biochemistry of palm oil. Prog Lipid Res 2000; 39: 507-558 DOI: 10.1016/s0163-7827(00)00015-1.
  • 55 Mukherjee S, Mitra A. Health effects of palm oil. J Hum Ecol 2009; 26: 197-203
  • 56 Soares-Costa A, Beltramini LM, Thiemann OH, Henrique-Silva F. A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochem Biophys Res Commun 2002; 296: 1194-1199 DOI: 10.1016/s0006-291x(02)02046-6.
  • 57 Schneider VK, da Silva Ferrara TF, Rocha SV, Santos-Júnior CD, Neo-Justino DM, da Cunha AF, de Oliveira da Silva JPM, Dos Santos Tersariol IL, Carmona AK, Henrique-Silva F, Soares-Costa A. Recombinant expression, characterization and phylogenetic studies of novels cystatins-like proteins of sweet orange (Citrus sinensis) and clementine (Citrus clementina). Int J Biol Macromol 2020; 152: 546-553 DOI: 10.1016/j.ijbiomac.2020.02.280.
  • 58 Shibao PYT, Santos-Júnior CD, Santiago AC, Mohan C, Miguel MC, Toyama D, Vieira MAS, Narayanan S, Figueira A, Carmona AK, Schiermeyer A, Soares-Costa A, Henrique-Silva F. Sugarcane cystatins: From discovery to biotechnological applications. Int J Biol Macromol 2021; 167: 676-686 DOI: 10.1016/j.ijbiomac.2020.11.185.
  • 59 Gianotti A, Rios WM, Soares-Costa A, Nogaroto V, Carmona AK, Oliva ML, Andrade SS, Henrique-Silva F. Recombinant expression, purification, and functional analysis of two novel cystatins from sugarcane (Saccharum officinarum). Protein Expr Purif 2006; 47: 483-489 DOI: 10.1016/j.pep.2005.10.026.
  • 60 Oliveira JP, Magliarelli HF, Pereira VF, Gianotti A, Soares-Costa A, Henrique-Silva F, Wakamatsu A, Soares IC, Nonogaki S, Travassos LR, Carmona AK, Paschoalin T. Sugarcane cystatin CaneCPI-4 inhibits melanoma growth by angiogenesis disruption. J Cancer Sci Ther 2011; 3: 161-167
  • 61 Gianotti A, Sommer CA, Carmona AK, Henrique-Silva F. Inhibitory effect of the sugarcane cystatin CaneCPI-4 on cathepsins B and L and human breast cancer cell invasion. Biol Chem 2008; 389: 447-453 DOI: 10.1515/BC.2008.035.
  • 62 Pelá VT, Buzalaf MAR, Niemeyer SH, Baumann T, Henrique-Silva F, Toyama D, Crusca E, Marchetto R, Lussi A, Carvalho TS. Acquired pellicle engineering with proteins/peptides: Mechanism of action on native human enamel surface. J Dent 2021; 107: 103612 DOI: 10.1016/j.jdent.2021.103612.
  • 63 Carvalho TS, Araújo TT, Ventura TMO, Dionizio A, Câmara JVF, Moraes SM, Pelá VT, Martini T, Leme JC, Derbotolli ALB, Grizzo LT, Crusca E, Shibao PYT, Marchetto R, Henrique-Silva F, Pessan JP, Buzalaf MAR. Acquired pellicle protein-based engineering protects against erosive demineralization. J Dent 2020; 102: 103478 DOI: 10.1016/j.jdent.2020.103478.
  • 64 de la Iglesia R, Milagro FI, Campión J, Boqué N, Martínez JÁ. Healthy properties of proanthocyanidins. Biofactors 2010; 36: 159-168 DOI: 10.1002/biof.79.
  • 65 Ferreira D, Slade D. Oligomeric proanthocyanidins: Naturally occurring O-heterocycles. Nat Prod Rep 2002; 19: 517-541 DOI: 10.1039/b008741f.
  • 66 Krenn L, Steitz M, Schlicht C, Kurth H, Gaedcke F. Anthocyanin-and proanthocyanidin-rich extracts of berries in food supplements–analysis with problems. Pharmazie 2007; 62: 803-812
  • 67 Hellström JK, Torronen AR, Mattila PH. Proanthocyanidins in common food products of plant origin. J Agric Food Chem 2009; 57: 7899-7906 DOI: 10.1021/jf901434d.
  • 68 Patel S. Rose hip as an underutilized functional food: Evidence-based review. Trends Food Sci Technol 2017; 63: 29-38
  • 69 Shi J, Yu J, Pohorly JE, Kakuda Y. Polyphenolics in grape seeds–biochemistry and functionality. J Med Food 2003; 6: 291-299 DOI: 10.1089/109662003772519831.
  • 70 Feghali K, Feldman M, La VD, Santos J, Grenier D. Cranberry proanthocyanidins: Natural weapons against periodontal diseases. J Agric Food Chem 2012; 60: 5728-5735 DOI: 10.1021/jf203304v.
  • 71 Boteon AP, Kato MT, Buzalaf MAR, Prakki A, Wang L, Rios D, Honório HM. Effect of Proanthocyanidin-enriched extracts on the inhibition of wear and degradation of dentin demineralized organic matrix. Arch Oral Biol 2017; 84: 118-124 DOI: 10.1016/j.archoralbio.2017.09.027.
  • 72 Leme-Kraus AA, Aydin B, Vidal CMP, Phansalkar RM, Nam JW, McAlpine J, Pauli GF, Chen S, Bedran-Russo AK. Biostability of the proanthocyanidins-dentin complex and adhesion studies. J Dent Res 2017; 96: 406-412 DOI: 10.1177/0022034516680586.
  • 73 Cardoso F, Boteon AP, Silva TAPD, Prakki A, Wang L, HonÓrio HM. In situ effect of a proanthocyanidin mouthrinse on dentin subjected to erosion. J Appl Oral Sci 2020; 28: e20200051 DOI: 10.1590/1678-7757-2020-0051.
  • 74 Kato MT, Magalhães AC, Rios D, Hannas AR, Attin T, Buzalaf MAR. Protective effect of green tea on dentin erosion and abrasion. J Appl Oral Sci 2009; 17: 560-564 DOI: 10.1590/s1678-77572009000600004.
  • 75 Magalhães AC, Wiegand A, Rios D, Hannas A, Attin T, Buzalaf MAR. Chlorhexidine and green tea extract reduce dentin erosion and abrasion in situ. J Dent 2009; 37: 994-998 DOI: 10.1016/j.jdent.2009.08.007.
  • 76 Sales-Peres SHDC, Xavier CNH, Mapengo MAA, Forim MR, Silva MDF, Sales-Peres A. Erosion and abrasion-inhibiting in situ effect of the Euclea natalensis plant of African regions. Braz Oral Res 2016; 30: S1806 DOI: 10.1590/1807-3107BOR-2016.vol30.0085.
  • 77 Ionta FQ, de Alencar CRB, Dos Santos NM, Bergantin BTP, Val PP, Honório HM, Oliveira TM, Rios D. Effect of palm oil alone or associated to stannous solution on enamel erosive-abrasive wear: A randomized in situ/ex vivo study. Arch Oral Biol 2018; 95: 68-73 DOI: 10.1016/j.archoralbio.2018.07.013.
  • 78 Pelá VT, Lunardelli JGQ, Tokuhara CK, Gironda CC, Silva NDGD, Carvalho TS, Santiago AC, Souza BM, Moraes SM, Henrique-Silva F, Magalhães AC, Oliveira RC, Buzalaf MAR. Safety and in situ antierosive effect of CaneCPI-5 on dental enamel. J Dent Res 2021; 100: 1344-1350 DOI: 10.1177/00220345211011590.
  • 79 Ozan G, Sar Sancakli H, Yucel T. Effect of black tea and matrix metalloproteinase inhibitors on eroded dentin in situ. Microsc Res Tech 2020; 83: 834-842 DOI: 10.1002/jemt.23475.
  • 80 Vidal CMP, Aguiar TR, Phansalkar R, McAlpine JB, Napolitano JG, Chen SN, Araújo LSN, Pauli GF, Bedran-Russo A. Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins. Acta Biomater 2014; 10: 3288-3294 DOI: 10.1016/j.actbio.2014.03.036.
  • 81 Demeule M, Brossard M, Pagé M, Gingras D, Béliveau R. Matrix metalloproteinase inhibition by green tea catechins. Biochim Biophys Acta 2000; 1478: 51-60 DOI: 10.1016/s0167-4838(00)00009-1.
  • 82 Jeon J, Kim JH, Lee CK, Oh CH, Song HJ. The antimicrobial activity of Epigallocatehin-3-Gallate and green tea extracts against pseudomonas aeruginosa and escherichia coli isolated from skin wounds. Ann Dermatol 2014; 26: 564-569 DOI: 10.5021/ad.2014.26.5.564.
  • 83 Anita P, Sivasamy S, Kumar PM, Balan IN, Ethiraj S. In vitro antibacterial activity of Camellia sinensis extract against cariogenic microorganisms. J Basic Clin Pharm 2014; 6: 35-39 DOI: 10.4103/0976-0105.145777.
  • 84 Matsunaga T, Nakahara A, Minnatul KM, Noiri Y, Ebisu S, Kato A, Azakami H. The inhibitory effects of catechins on biofilm formation by the periodontopathogenic bacterium, Eikenella corrodens. Biosci Biotechnol Biochem 2010; 74: 2445-2450 DOI: 10.1271/bbb.100499.
  • 85 Afanasʼev IB, Dcrozhko AI, Brodskii AV, Kostyuk VA, Potapovitch AI. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol 1989; 38: 1763-1769 DOI: 10.1016/0006-2952(89)90410-3.
  • 86 Buening MK, Chang RL, Huang MT, Fortner JG, Wood AW, Conney AH. Activation and inhibition of benzo(a)pyrene and aflatoxin B1 metabolism in human liver microsomes by naturally occurring flavonoids. Cancer Res 1981; 41: 67-72
  • 87 Kolodziej H, Haberland C, Woerdenbag HJ, Konings AWT. Moderate cytotoxicity of proanthocyanidins to human tumour cell lines. Phytother Res 1995; 9: 410-415 DOI: 10.1002/ptr.2650090605.
  • 88 Han B, Jaurequi J, Tang BW, Nimni ME. Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res 2003; 65: 118-124 DOI: 10.1002/jbm.a.10460.
  • 89 Palgrave KC. Trees of South Africa. Cape Town, Johannesburg: C. Struik Publishers; 1977
  • 90 Evans WC. Trease and Evans Pharmacognosy. 15th edn. Edinburgh: Sanders Co. Ltd. Singapore; 2002
  • 91 Santiago AC, Khan ZN, Miguel MC, Gironda CC, Soares-Costa A, Pela VT, Leite AL, Edwardson JM, Buzalaf MAR, Henrique-Silva F. A new sugarcane cystatin strongly binds to dental enamel and reduces erosion. J Dent Res 2017; 96: 1051-1057 DOI: 10.1177/0022034517712981.
  • 92 Buchalla W, Attin T, Roth P, Hellwig E. Infuence of olive oil emulsions on dentin demineralization in vitro. Caries Res 2003; 37: 100-107 DOI: 10.1159/000069017.
  • 93 Wiegand A, Gutsche M, Attin T. Effect of olive oil and an oliveoil-containing fluoridated mouthrinse on enamel and dentin erosion in vitro. Acta Odontol Scand 2007; 65: 357-361 DOI: 10.1080/00016350701771843.
  • 94 Ionta FQ, Alencar CRBD, Val PP, Boteon AP, Jordão MC, Honorio HM, Buzalaf MAR, Rios D. Effect of vegetable oils applied over acquired enamel pellicle on initial erosion. J App Oral Sci 2017; 25: 420-426 DOI: 10.1590/1678-7757-2016-0436.
  • 95 Flemming J, Meyer-Probst CT, Speer K, Kölling-Speer I, Hannig C, Hannig M. Preventive applications of polyphenols in dentistry–A review. Int J Mol Sci 2021; 22: 4892 DOI: 10.3390/ijms22094892.