Synthesis 2023; 55(21): 3589-3599
DOI: 10.1055/a-2018-0965
special topic
C–H Bond Functionalization of Heterocycles

Aryl Triflates in Phosphorus-Directed Rhodium(III)-Catalyzed C–H Activation

Julien Roger
,
Charline Sire
,
Anthonia Tsivery
,
,
This work was supported by the CNRS, the Université de Bourgogne, the Conseil Régional Bourgogne-Franche-Comté, and the Fonds Européen de Développement Régional (FEDER). This work was also funded by the French Agence Nationale de la Recherche via the ANR-JCJC program 2018 FIT-FUN (ANR-18-CE07-0015, for J.R. and a grant for C.S.) and the ANR PRC program 2020 CARAPH (ANR-20-CE07-0001-01, for J.-C.H).


Abstract

Aryl triflates are selected as suitable electrophile coupling partners for the phosphorus-directed rhodium(III)-catalyzed direct C–H arylation of polyaromatic phosphines. We report herein simple conditions for the peri-C–H functionalization of polyarylphosphines, where a [Rh(III)Cl2Cp*]2 precatalyst is employed to provide a convenient access to polyarylated phosphines in up to 93% isolated yield. This synthetic approach tolerates a wide range of different aryl trifluoromethylsulfonate derivatives bearing either electron-donating (COMe, CN, CF3 or Cl) or electron-withdrawing substituents (Me, OMe) at the para-, meta- and ortho-positions, and includes bulky polyaromatic triflate substrates. We further describe access to a large class of polycyclic aromatic hydrocarbon phosphine ligands, their oxidized derivatives (i.e., their oxides and selenides), their coordination modes with Au(I) and Cu(I) coinage metal salts, and their use as efficient ligands for the atom-economic, gold-catalyzed oxidative cyclization of terminal alkynes with nitriles.

Supporting Information



Publication History

Received: 26 October 2022

Accepted after revision: 23 January 2023

Accepted Manuscript online:
23 January 2023

Article published online:
14 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Petrone DA, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003
    • 1b Alkyl halides are prepared by free-radical halogenation or via addition to alkenes; aryl halides are prepared by Friedel–Crafts electrophilic halogenation, Sandmeyer reactions of diazonium salts, or halogenations of preformed organometallic reagents. These protocols suffer from low functional group tolerance, are limited to activated substrates, produce metal salts as stoichiometric by-products, demonstrate poor levels of regioselectivity and risks of over halogenation. These limitations result in tedious separation protocols for accessing pure isomers and/or monohalogenated products.
    • 1c Mečiarová M, Toma Š, Loupy A, Horváth B. Phosphorus, Sulfur Silicon Relat. Elem. 2008; 183: 21-33
    • 1d For P–F bond-forming processes at Rh(I) and Pd(II), see: Grushin VV. Acc. Chem. Res. 2010; 43: 160
    • 1e Guo T, Meng G, Zhan X, Yang Q, Ma T, Xu L, Sharpless KB, Dong J. Angew. Chem. Int. Ed. 2018; 57: 2605
    • 1f Ackermann L, Althammer A, Fenner S. Angew. Chem. Int. Ed. 2009; 48: 201
    • 1g Roger J, Doucet H. Org. Biomol. Chem. 2008; 6: 169
    • 2a Proudfoot JR, Hargrave KD, Kapadia SR, Patel UR, Grozinger KG, McNeil DW, Cullen E, Cardozo M, Tong L, Kelly TA, Rose J, David E, Mauldin SC, Fuchs VU, Vitous J, Hoermann M, Klunder JM, Raghavan P, Skiles JW, Mui P, Richman DD, Sullivan JL, Shih C.-K, Grob PM, Adams J. J. Med. Chem. 1995; 38: 4830
    • 2b Okazawa T, Satoh T, Miura M, Nomura M. J. Am. Chem. Soc. 2002; 124: 5286
    • 2c Bellina F, Cauteruccio S, Mannina L, Rossi R, Viel S. J. Org. Chem. 2005; 70: 3997
    • 2d Hara O, Nakamura T, Sato F, Makino K, Hamada Y. Heterocycles 2006; 68: 1
    • 2e Roger J, Doucet H. Org. Biomol. Chem. 2008; 6: 169
    • 2f Strotman NA, Chobanian HR, Guo Y, He J, Wilson JE. Org. Lett. 2010; 12: 3578
    • 2g Vachhani DD, Sharma A, Van der Eycken E. J. Org. Chem. 2012; 77: 8768
    • 2h Yamaguchi M, Suzuki K, Sato Y, Manabe K. Org. Lett. 2017; 19: 5388
    • 3a Chang JW. W, Chia EY, Li C, Chai L, Seayad J. Org. Biomol. Chem. 2012; 10: 2289
    • 3b Lafrance M, Shore D, Fagnou K. Org. Lett. 2006; 8: 2097
  • 4 Jiao J, Murakami K, Itami K. Chem. Lett. 2016; 45: 529
    • 5a Canivet J, Yamaguchi J, Ban I, Itami K. Org. Lett. 2009; 11: 1733
    • 5b Yamamoto T, Muto K, Komiyama M, Canivet J, Yamaguchi J, Itami K. Chem. Eur. J. 2011; 17: 10113
    • 5c Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 169
    • 5d Wang J, Meng G, Xie K, Li L, Sun H, Huang Z. ACS Catal. 2017; 7: 7421
  • 6 Liu Y, He L, Yin G, Wu G, Cui Y. Bull. Korean Chem. Soc. 2013; 34: 2030
  • 7 Cao H, Zhan H, Lin Y, Lin X, Du Z, Jiang H. Org. Lett. 2012; 14: 1688
    • 8a Oi S, Fukita S, Hirata N, Watanuki N, Miyano S, Inoue Y. Org. Lett. 2001; 3: 2579
    • 8b Diers E, Phani Kumar NY, Mejuch T, Marek I, Ackermann L. Tetrahedron 2013; 69: 4445
    • 8c Hubrich J, Ackermann L. Eur. J. Org. Chem. 2016; 3700
    • 8d Huang L, Weix DJ. Org. Lett. 2016; 18: 5432
    • 8e Simonetti M, Cannas DM, Panigrahi A, Kujawa S, Kryewski M, Xie P, Larossa I. Chem. Eur. J. 2017; 23: 549
    • 8f Simonetti M, Cannas DM, Just-Baringo X, Vitorica-Yrezabal IJ, Larrosa I. Nat. Chem. 2018; 10: 724
    • 9a Roger J, Hierso J.-C. Eur. J. Org. Chem. 2018; 4953
    • 9b Abidi O, Boubaker T, Hierso J.-C, Roger J. Org. Biomol. Chem. 2019; 17: 5916
  • 11 Brissos RF, Clavero P, Gallen A, Grabulosa A, Barrios LA, Caballero AB, Korrodi-Gregório L, Pérez-Tomás R, Muller G, Soto-Cerrato V, Gamez P. Inorg. Chem. 2018; 57: 14786
    • 12a Rafols L, Torrente S, Aguilà D, Soto-Cerrato V, Pérez-Tomás R, Gamez P, Grabulosa A. Organometallics 2020; 39: 2959
    • 12b Hu J, Yip JH. K, Ma D.-L, Wong K.-Y, Chung W.-H. Organometallics 2009; 28: 51
    • 13a Mocanu A, Szücs R, Caytan E, Roisnel T, Dorcet V, Bouit P.-A, Nyulászi L, Hissler M. J. Org. Chem. 2019; 84: 957
    • 13b Delouche T, Vacher A, Caytan E, Roisnel T, Le Guennic B, Jacquemin D, Hissler M, Bouit P.-A. Chem. Eur. J. 2020; 26: 8226
    • 13c Belyaev A, Chen Y.-T, Liu Z.-Y, Hindenberg P, Wu C.-H, Chou P.-T, Romero-Nieto C, Koshevoy OI. Chem. Eur. J. 2019; 25: 6332
  • 14 Zhang Z, Dixneuf PH, Soulé J.-F. Chem. Commun. 2018; 54: 7265

    • For selective and recent Ru- or Rh-catalyzed P-direct activation/functionalization of aryl phosphines, see also:
    • 15a Fukuda K, Iwasawa N, Takaya J. Angew. Chem. Int. Ed. 2019; 58: 2850
    • 15b Zhang Z, Roisnel T, Dixneuf PH, Soulé J.-F. Angew. Chem. Int. Ed. 2019; 58: 14110
    • 15c Homma Y, Fukuda K, Iwasawa N, Takaya J. Chem. Commun. 2020; 56: 10710
    • 15d Wen J, Dong B, Zhu J, Zhao Y, Shi Z. Angew. Chem. Int. Ed. 2020; 59: 10909
    • 15e Zhang Z, Cordier M, Dixneuf PH, Soulé J.-F. Org. Lett. 2020; 22: 5936
  • 16 Qiu X, Wang M, Zhao Y, Shi Z. Angew. Chem. Int. Ed. 2017; 56: 7233
  • 17 Luo X, Yuan J, Yue C.-D, Zhang Z.-Y, Chen J, Yu G.-A, Che C.-M. Org. Lett. 2018; 20: 1810
  • 18 Sire C, Cattey H, Tsivery A, Hierso J.-C, Roger J. Adv. Synth. Catal. 2021; 364: 440
  • 19 Wang D, Li M, Shuang C, Liang Y, Zhao Y, Wang M, Shi Z. Nat. Commun. 2022; 13: 2934
  • 20 Roger J, Royer S, Cattey H, Savateev A, Smaliy RV, Kostyuk AN, Hierso J.-C. Eur. J. Inorg. Chem. 2017; 330
  • 21 Breshears AT, Behrle AC, Barnes CL, Laber CH, Baker GA, Walensky JR. Polyhedron 2015; 100: 333
  • 22 Nieto-Oberhuber C, López S, Echavarren AM. J. Am. Chem. Soc. 2005; 127: 6178
  • 23 Nguyen T.-A, Penouilh M.-J, Cattey H, Pirio N, Fleurat-Lessard P, Hierso J.-C, Roger J. Organometallics 2021; 40: 3571
  • 24 For synthetic applications of coinage metals, see: Lipshutz BH, Yamamoto Y. Chem. Rev. 2008; 8: 2793 ; special issue and related papers
    • 25a He W, Li C, Zhang L. J. Am. Chem. Soc. 2011; 133: 8482
    • 25b Skoch K, Cisarova I, Stepnicka P. Chem. Eur. J. 2015; 21: 15998
    • 25c Schießl J, Stein PM, Stirn J, Emler K, Rudolph M, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2019; 361: 725
  • 26 Besselièvre F, Lebrequier S, Mahuteau-Betzer F, Piguel S. Synthesis 2009; 3511
  • 27 Sahoo SR, Sarkar D. Eur. J. Org. Chem. 2020; 1727