Die Wirbelsäule 2023; 07(03): 153-158
DOI: 10.1055/a-1993-9077
Übersicht

Lumbale Spinalkanalstenose – Update zur minimalinvasiven Chirurgie

Lumbar spinal canal stenosis – update of minimal invasive surgery
Nicole Lange
1   Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
,
Yu-Mi Ryang
2   Helios Klinikum Berlin-Buch GmbH, Klinik für Neurochirurgie und Zentrum für Wirbelsäulentherapie, Berlin, Deutschland
,
Maximilian Scheer
3   Klinik mit Poliklinik für Neurochirurgie, Universitätsklinikum Halle, Halle, Deutschland
,
Bernhard Meyer
1   Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
› Author Affiliations

Zusammenfassung

In der modernen Neurochirurgie stehen vermehrt minimalinvasive Operationstechniken zur Verfügung. Hier sollen am Beispiel der lumbalen Spinalkanalstenose einige dieser Techniken erklärt und bewertet werden. Diese sind die indirekte Dekompression via XLIF und ALIF-Zugang, der minimalinvasive TLIF, roboterassistierte Schraubenanlage, sowie Single-Position-Surgery.

Abstract

In modern neurosurgery, an increasing number of minimally invasive surgical techniques are available. Using the example of lumbar spinal stenosis, we explain and evaluate some of these techniques: indirect decompression via XLIF and ALIF access, minimally invasive TLIF, robot-assisted screw fixation, and single-position surgery.



Publication History

Article published online:
24 August 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Lurie J, Tomkins-Lane C. Management of lumbar spinal stenosis. Bmj 2016; 352: h6234 DOI: 10.1136/bmj.h6234. (PMID: 26727925)
  • 2 Meyer B, Rauschmann M. Spine Surgery – A Case-Based Approach. Springer; 2019
  • 3 Lurie JD. et al. Long-term outcomes of lumbar spinal stenosis: eight-year results of the Spine Patient Outcomes Research Trial (SPORT). Spine (Phila Pa 1976) 2015; 40: 63-76 DOI: 10.1097/BRS.0000000000000731. (PMID: 25569524)
  • 4 Peul WC. et al. Surgery versus prolonged conservative treatment for sciatica. N Engl J Med 2007; 356: 2245-2256 DOI: 10.1056/NEJMoa064039. (PMID: 17538084)
  • 5 Försth P. et al. A Randomized, Controlled Trial of Fusion Surgery for Lumbar Spinal Stenosis. N Engl J Med 2016; 374: 1413-1423 DOI: 10.1056/NEJMoa1513721. (PMID: 27074066)
  • 6 Karlsson T. et al. Decompression alone or decompression with fusion for lumbar spinal stenosis: a randomized clinical trial with two-year MRI follow-up. Bone Joint J 2022; 104-b: 1343-1351 DOI: 10.1302/0301-620X.104B12.BJJ-2022-0340.R1. (PMID: 36453045)
  • 7 Meyer B. et al. Lumbar dynamic pedicle-based stabilization versus fusion in degenerative disease: a multicenter, double-blind, prospective, randomized controlled trial. J Neurosurg Spine 2022; 37: 1-10 DOI: 10.3171/2022.2.SPINE21525. (PMID: 35453106)
  • 8 Luo L. et al. Comparison between Dynamic Stabilization and Instrumented Fusion in the Treatment of Spinal Stenosis with Degenerative Lumbar Scoliosis. Pain Res Manag 2022; 2022: 9367106
  • 9 Lange N, Meyer B, Meyer HS. Navigation for surgical treatment of disorders of the cervical spine - A systematic review. J Orthop Surg (Hong Kong) 2021; 29 (Suppl. 01) DOI: 10.1177/23094990211012865. (PMID: 34711079)
  • 10 Ringel F. et al. Navigation, robotics, and intraoperative imaging in spinal surgery. Adv Tech Stand Neurosurg 2014; 41: 3-22 DOI: 10.1007/978-3-319-01830-0_1. (PMID: 24309918)
  • 11 Schwendner M, Meyer B, Krieg SM. Robot-assisted pedicle screw placement. Oper Orthop Traumatol 2023; 35: 37-42 DOI: 10.1007/s00064-022-00792-5. (PMID: 36459194)
  • 12 Joerger AK. et al. Surgical site infections after minimally invasive versus open posterior instrumentation for patients with spinal metastases. Brain and Spine 2021; 1: 100428
  • 13 Janssen IK. et al. Minimally invasive posterior pedicle screw fixation versus open instrumentation in patients with thoracolumbar spondylodiscitis. Acta Neurochir (Wien) 2021; 163: 1553-1560
  • 14 Kotani Y. et al. Mid-term clinical results of minimally invasive decompression and posterolateral fusion with percutaneous pedicle screws versus conventional approach for degenerative spondylolisthesis with spinal stenosis. Eur Spine J 2012; 21: 1171-1177
  • 15 Dasenbrock HH. et al. The efficacy of minimally invasive discectomy compared with open discectomy: a meta-analysis of prospective randomized controlled trials. J Neurosurg Spine 2012; 16: 452-462
  • 16 Barth M, Weiss C, Thomé C. Two-year outcome after lumbar microdiscectomy versus microscopic sequestrectomy: part 1: evaluation of clinical outcome. Spine (Phila Pa 1976) 2008; 33: 265-272 DOI: 10.1097/BRS.0b013e31816201a6. (PMID: 18303459)
  • 17 Bender M. et al. Implementation of Transforaminal Endoscopic Lumbar Sequestrectomy in a German University Hospital Setting: A Long and Rocky Road. J Neurol Surg A Cent Eur Neurosurg 2020; 81: 17-27 DOI: 10.1055/s-0039-1694040. (PMID: 31466103)
  • 18 Derman PB. et al. Indirect Decompression for the Treatment of Degenerative Lumbar Stenosis. Int J Spine Surg 2021; 15: 1066-1071 DOI: 10.14444/8192. (PMID: 35078878)
  • 19 Shimizu T. et al. Indirect decompression with lateral interbody fusion for severe degenerative lumbar spinal stenosis: minimum 1-year MRI follow-up. J Neurosurg Spine 2020; 33: 1-8
  • 20 Gagliardi MJ. et al. Is Indirect Decompression and Fusion More Effective than Direct Decompression and Fusion for Treating Degenerative Lumbar Spinal Stenosis With Instability? A Systematic Review and meta-Analysis. Global Spine J 2023; 13: 499-511
  • 21 Hagedorn JM. et al. The incidence of lumbar spine surgery following Minimally Invasive Lumbar Decompression and Superion Indirect Decompression System for treatment of lumbar spinal stenosis: a retrospective review. Pain Pract 2022; 22: 516-521 DOI: 10.1111/papr.13111. (PMID: 35373492)
  • 22 Nakashima H. et al. Indirect Decompression on MRI Chronologically Progresses After Immediate Postlateral Lumbar Interbody Fusion: The Results From a Minimum of 2 Years Follow-Up. Spine (Phila Pa 1976) 2019; 44: E1411-e1418
  • 23 Takahashi Y. et al. Sequential MRI Changes After Lateral Lumbar Interbody Fusion in Spondylolisthesis with Mild and Severe Lumbar Spinal Stenosis. World Neurosurg 2021; 152: e289-e296
  • 24 Lim KZ. et al. Dynamic Posture-Related Preoperative Pain as a Single Clinical Criterion in Patient Selection for Extreme Lateral Interbody Fusion Without Direct Decompression. Global Spine J 2019; 9: 575-582
  • 25 Morgan CD. et al. When Indirect Decompression Fails: A Review of 220 Consecutive Direct Lateral Interbody Fusions and Unplanned Secondary Decompression. Spine (Phila Pa 1976) 2021; 46: 1081-1086
  • 26 Mobbs RJ. et al. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 2015; 1: 2-18 DOI: 10.3978/j.issn.2414-469X.2015.10.05. (PMID: 27683674)
  • 27 Lener S. et al. Defining the MIS-TLIF: A Systematic Review of Techniques and Technologies Used by Surgeons Worldwide. Global Spine J 2020; 10 (Suppl. 02) 151s-167s DOI: 10.1177/2192568219882346. (PMID: 32528800)
  • 28 Jin-Tao Q. et al. Comparison of MIS vs. open PLIF/TLIF with regard to clinical improvement, fusion rate, and incidence of major complication: a meta-analysis. Eur Spine J 2015; 24: 1058-1065
  • 29 Wong AP. et al. Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF): surgical technique, long-term 4-year prospective outcomes, and complications compared with an open TLIF cohort. Neurosurg Clin N Am 2014; 25: 279-304
  • 30 Vazan M. et al. Minimally invasive transforaminal lumbar interbody fusion versus open transforaminal lumbar interbody fusion: a technical description and review of the literature. Acta Neurochir (Wien) 2017; 159: 1137-1146 DOI: 10.1007/s00701-017-3078-3. (PMID: 28160064)
  • 31 Shin BJ. et al. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine 2012; 17: 113-122 DOI: 10.3171/2012.5.SPINE11399. (PMID: 22724594)
  • 32 Fichtner J. et al. Revision Rate of Misplaced Pedicle Screws of the Thoracolumbar Spine-Comparison of Three-Dimensional Fluoroscopy Navigation with Freehand Placement: A Systematic Analysis and Review of the Literature. World Neurosurg 2018; 109: e24-e32
  • 33 Krieg SM, Meyer B. First experience with the jump-starting robotic assistance device Cirq. Neurosurg Focus 2018; 45 (Suppl. 01) V3 DOI: 10.3171/2018.7.FocusVid.18108. (PMID: 29963918)
  • 34 Schwendner M. et al. The one-stop-shop approach: Navigating lumbar 360-degree instrumentation in a single position. Front Surg 2023; 10: 1152316 DOI: 10.3389/fsurg.2023.1152316. (PMID: 37009623)
  • 35 Kwee MM, Ho YH, Rozen WM. The prone position during surgery and its complications: a systematic review and evidence-based guidelines. Int Surg 2015; 100: 292-303 DOI: 10.9738/INTSURG-D-13-00256.1. (PMID: 25692433)
  • 36 Keorochana G, Muljadi JA, Kongtharvonskul J. Perioperative and Radiographic Outcomes Between Single-Position Surgery (Lateral Decubitus) and Dual-Position Surgery for Lateral Lumbar Interbody Fusion and Percutaneous Pedicle Screw Fixation: Meta-Analysis. World Neurosurg 2022; 165: e282-e291 DOI: 10.1016/j.wneu.2022.06.029. (PMID: 35710097)