Synlett 2021; 32(12): 1227-1230
DOI: 10.1055/a-1520-9916
letter

Green Aerobic Oxidation of Thiols to Disulfides by Flavin–Iodine Coupled Organocatalysis

Marina Oka
,
Ryo Kozako
,
Hiroki Iida
This work was supported in part by JSPS/MEXT KAKENHI [Grant-in-Aid for Scientific Research (C), No. 19K05617] and by the Electric Technology Research Foundation of Chugoku.


Abstract

Coupled catalysis using a riboflavin-derived organocatalyst and molecular iodine successfully promoted the aerobic oxidation of thiols to disulfides under metal-free mild conditions. The activation of molecular oxygen occurred smoothly at room temperature through the transfer of electrons from the iodine catalyst to the biomimetic flavin catalyst, forming the basis for a green oxidative synthesis of disulfides from thiols.

Supporting Information



Publication History

Received: 22 April 2021

Accepted: 31 May 2021

Accepted Manuscript online:
31 May 2021

Article published online:
14 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Bruice TC. Acc. Chem. Res. 1980; 13: 256
    • 2b Murahashi S.-I, Oda T, Masui Y. J. Am. Chem. Soc. 1989; 111: 5002
    • 2c Murahashi S.-I. Angew. Chem. Int. Ed. 1995; 34: 2443

      For the selected examples, see:
    • 3a Imada Y, Iida H, Ono S, Murahashi S.-I. J. Am. Chem. Soc. 2003; 125: 2868
    • 3b Imada Y, Iida H, Murahashi S.-I, Naota T. Angew. Chem. Int. Ed. 2005; 44: 1704
    • 3c Chen S, Foss FW. Jr. Org. Lett. 2012; 14: 5150
    • 3d Kotoučová H, Strnadová I, Kovandová M, Chudoba J, Dvořáková H, Cibulka R. Org. Biomol. Chem. 2014; 12: 2137
    • 3e Murahashi S.-I, Zhang D, Iida H, Miyawaki T, Uenaka M, Murano K, Meguro K. Chem. Commun. 2014; 50: 10295

      For the selected examples, see:
    • 4a Fukuzumi S, Kuroda S, Tanaka T. J. Am. Chem. Soc. 1985; 107: 3020
    • 4b Cibulka R, Vasold R, König B. Chem. Eur. J. 2004; 10: 6223
    • 4c Mühldorf B, Wolf R. Angew. Chem. Int. Ed. 2016; 55: 427
    • 4d Metternich JB, Gilmour R. J. Am. Chem. Soc. 2016; 138: 1040
    • 4e Ramirez NP, König B, Gonzalez-Gomez JC. Org. Lett. 2019; 21: 1368
    • 4f Zelenka J, Cibulka R, Roithová J. Angew. Chem. Int. Ed. 2019; 58: 15412

      For reviews, see:
    • 5a Iida H, Imada Y, Murahashi S.-I. Org. Biomol. Chem. 2015; 13: 7599
    • 5b Cibulka R. Eur. J. Org. Chem. 2015; 915
    • 5c König B, Kümmel S, Svobodová E, Cibulka R. Phys. Sci. Rev. 2018; 3: 20170168 DOI: 10.1515/psr-2017-0168.
  • 6 Ishikawa T, Kimura M, Kumoi T, Iida H. ACS Catal. 2017; 7: 4986
    • 7a Ohkado R, Ishikawa T, Iida H. Green Chem. 2018; 20: 984
    • 7b Iida H, Demizu R, Ohkado R. J. Org. Chem. 2018; 83: 12291
    • 7c Tanimoto K, Ohkado R, Iida H. J. Org. Chem. 2019; 84: 14980
    • 7d Jiang X, Shen Z, Zheng C, Fang L, Chen K, Yu C. Tetrahedron Lett. 2020; 61: 152141
  • 8 Tanimoto K, Okai H, Oka M, Ohkado R, Iida H. Org. Lett. 2021; 23: 2084
  • 9 Okai H, Tanimoto K, Ohkado R, Iida H. Org. Lett. 2020; 22: 8002
  • 10 Pramanik M, Choudhuri K, Mal P. Org. Biomol. Chem. 2020; 18: 8771
    • 11a Narayan M, Welker E, Wedemeyer WJ, Scheraga HA. Acc. Chem. Res. 2000; 33: 805
    • 11b Lee MH, Yang Z, Lim CW, Lee YH, Dongbang S, Kang C, Kim JS. Chem. Rev. 2013; 113: 5071
    • 11c Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP. Chem. Rev. 2017; 117: 8094
    • 11d Fass D, Thorpe C. Chem. Rev. 2018; 118: 1169
    • 12a Grönbeck H, Curioni A, Andreoni W. J. Am. Chem. Soc. 2000; 122: 3839
    • 12b Cui H.-K, Guo Y, He Y, Wang F.-L, Chang H.-N, Wang Y.-J, Wu F.-M, Tian C.-L, Liu L. Angew. Chem. Int. Ed. 2013; 52: 9558
    • 13a Witt D. Synthesis 2008; 2491
    • 13b Mandal B, Basu B. RSC Adv. 2014; 4: 13854
    • 14a Abdel-Mohsen HT, Sudheendran K, Conrad J, Beifuss U. Green Chem. 2013; 15: 1490
    • 14b Dou Y, Huang X, Wang H, Yang L, Li H, Yuan B, Yang G. Green Chem. 2017; 19: 2491
    • 14c Qiu X, Yang X, Zhang Y, Song S, Jiao N. Org. Chem. Front. 2019; 6: 2220
    • 14d Song L, Li W, Duan W, An J, Tang S, Li L, Yang G. Green Chem. 2019; 21: 1432
  • 15 Oka M, Katsube D, Tsuji T, Iida H. Org. Lett. 2020; 22: 9244
  • 16 Müller F. Methods Enzymol., B 1971; 18: 453 DOI: 10.1016/S0076-6879(71)18104-9.
  • 17 Ménová P, Dvořáková H, Eigner V, Ludvík J, Cibulka R. Adv. Synth. Catal. 2013; 355: 3451
  • 18 Sakai T, Kumoi T, Ishikawa T, Nitta T, Iida H. Org. Biomol. Chem. 2018; 16: 3999
  • 19 Tolba AH, Vávra F, Chudoba J, Cibulka R. Eur. J. Org. Chem. 2020; 2020: 1579
  • 20 Goto K, Holler M. Chem. Commun. 1998; 1915
  • 21 Bettanin L, Saba S, Galetto FZ, Mike GA, Rafique J, Braga AL. Tetrahedron Lett. 2017; 58: 4713

    • Similar neutral riboflavin derivatives have been applied in the oxidation of thiols without photoirradiation or an iodine catalyst, but the reaction rate was very slow; see:
    • 22a Loechler EL, Hollocher TC. J. Am. Chem. Soc. 1975; 97: 3235
    • 22b Loechler EL, Hollocher TC. J. Am. Chem. Soc. 1980; 102: 7312
  • 23 Kamel C, Chan TW, Bruice TC. J. Am. Chem. Soc. 1977; 99: 7272
  • 24 Dioctyl Disulfide (3a): Typical Procedure A mixture of octane-1-thiol (2a; 73.1 mg, 0.50 mmol), flavin 1a (13.6 mg, 0.025 mmol), I2 (6.35 mg, 0.025 mmol), and t-BuOH (1.0 mL) was stirred at 26 °C (water bath) for 8 h under air (1 atm, balloon) in the dark. The solvent was then evaporated and the residue was purified by column chromatography (silica gel, CHCl3) to give a colorless oil: yield: 70.7 mg (97%). 1H NMR (500 MHz, CDCl3, 25 °C): δ = 2.68 (t, J = 7.4 Hz, 4 H), 1.67 (quin, J = 7.4 Hz, 4 H), 1.41–1.33 (m, 4 H), 1.32–1.20 (m, 16 H), 0.88 (t, J = 6.9 Hz, 6 H). 13C{1H} NMR (126 MHz, CDCl3, 25 °C): δ = 39.3, 31.8, 29.3, 28.6, 22.7, 14.1.