Aktuelle Ernährungsmedizin 2019; 44(04): 269-284
DOI: 10.1055/a-0843-6733
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Protein in der klinischen Ernährung kritisch kranker Patienten

Protein in Clinical Nutrition
Karl Georg Kreymann
,
Geraldine de Heer

Subject Editor: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Prof. Dr. med. Christian Löser, Kassel.
Further Information

Publication History

Publication Date:
20 August 2019 (online)

Aminosäuren sind die biologischen Baustoffe für alle Struktur- und Funktionsproteine. Da jede Erkrankung mit einem Abbau dieser Proteine einhergeht, ist die Zufuhr von Protein bzw. Aminosäuren essenziell für deren Resynthese. Derzeit gibt es keine Möglichkeit, die endogene Aminosäurefreisetzung zu bestimmen. So bleiben Zeitpunkt und Dosierung der Proteinzufuhr beim kritisch Kranken weiterhin Gegenstand der Diskussion.

Abstract

Critical illness is associated with a loss of body protein and skeletal muscle. Of 18 heterogenous randomized studies evaluating different doses of protein, 15 (83 %) found better results with a higher dose, which ranged from 1.1 to 3.6 g/kg/day. As the degree of catabolism varies with different diseases, there can be no optimal protein dose for all patients. However, clinical evidence is still week as only nitrogen balance was the primary endpoint in most of these trials. Observational studies showed a time dependency of the protein dose and lowest mortality with a dose ≥ 1.2 g/kg/day on and after day 4 or 6. However, in septic patients in the acute phase of infection the provision of > 1.2 g/kg/day of protein was associated with a higher mortality in one observational study. For future research, randomized studies should be performed on groups of patients with a defined protein loss. Also, protein dose should be related to lean body mass.

Kernaussagen
  • Eine schwere Erkrankung kann innerhalb kurzer Zeit zu einem erheblichen Verlust von Körperprotein und Skelettmuskulatur führen.

  • Unterschiedliche Erkrankungen gehen mit einem unterschiedlichen Grad der Katabolie und des Proteinverlustes einher. Aus diesem Grund kann es die eine optimale Proteindosis für alle kritisch Kranken in allen Krankheitsstadien nicht geben.

  • Die vorliegenden 18 randomisierten Studien weisen deshalb sehr unterschiedliche Proteindosierungen als optimal aus. Allerdings ist ihre Evidenz als gering zu bewerten, da mehr als die Hälfte nur die Stickstoffbilanz als primären Zielpunkt hatte.

  • Zukünftige Studien sollten eher auf eng definierte Patientenkollektive mit einem bestimmten Proteinverlust zugeschnitten sein.

  • Mehrere Beobachtungsstudien kommen zu dem Ergebnis, dass eine höhere Proteindosis (≥ 1,2 g/kg/Tag an und nach Tag 4 – 6) mit einer niedrigeren Mortalität verbunden ist. Allerdings sollte diese Dosis über eine kontinuierliche Steigerung, beginnend mit < 0,8 g/kg/Tag an Tag 1, erreicht werden.

  • Bei septischen Patienten sollte in der Frühphase eine niedrigere Proteindosis gewählt werden, die dann allerdings in der Erholungsphase deutlich gesteigert werden muss.

  • Die Proteindosierung sollte zukünftig, wenn in der klinischen Routine möglich, pro Körpermagermasse angegeben werden, da eine Dosis pro kg Körpergewicht nicht den geschlechtsbedingten Unterschieden gerecht wird.

  • Die biologische Äquivalenz von enteral zugeführtem Protein und parenteral zugeführten Aminosäuren ist wahrscheinlich eher 1:1.

 
  • Literatur

  • 1 Stein J, Böhles H-J, Blumenstein I. et al. Leitlinie Parenterale Ernährung der DGEM – Aminosäuren. Aktuel Ernahrungsmed 2007; 32: 13-17
  • 2 Mitchell CJ, Milan AM, Mitchell SM. et al. The effects of dietary protein intake on appendicular lean mass and muscle function in elderly men: a 10-wk randomized controlled trial. Am J Clin Nutr 2017; 106: 1375-1383
  • 3 Kinney JM, Duke Jr JH, Long CL. et al. Tissue fuel and weight loss after injury. J Clin Pathol Suppl (R Coll Pathol) 1970; 4: 65-72
  • 4 Long CL, Schaffel N, Geiger JW. et al. Metabolic response to injury and illness: estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN J Parenter Enteral Nutr 1979; 3: 452-456
  • 5 Elwyn DH, Gump FE, Munro HN. et al. Changes in nitrogen balance of depleted patients with increasing infusions of glucose. Am J Clin Nutr 1979; 32: 1597-1611
  • 6 Heyland DK, MacDonald S, Keefe L. et al. Total parenteral nutrition in the critically ill patient: a meta-analysis. JAMA 1998; 280: 2013-2019
  • 7 Plank LD, Connolly AB, Hill GL. Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis [see comments]. Ann Surg 1998; 228: 146-158
  • 8 Hoffer LJ, Bistrian BR. Appropriate protein provision in critical illness: a systematic and narrative review. Am J Clin Nutr 2012; 96: 591-600
  • 9 McClave SA, Taylor BE, Martindale RG. et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 2016; 40: 159-211
  • 10 Singer P, Blaser AR, Berger MM. et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 2018; DOI: 10.1016/j.clnu.2018.08.037.
  • 11 Elke G, Hartl WH, Kreyman KG. et al. DGEM-Leitlinie: „Klinische Ernährung in der Intensivmedizin“. Aktuel Ernahrungsmed 2018; 43: 341-408
  • 12 Alexander JW, MacMillan BG, Stinnett JD. et al. Beneficial effects of aggressive protein feeding in severely burned children. Ann Surg 1980; 192: 505-517
  • 13 Shizgal HM, Forse RA. Protein and calorie requirements with total parenteral nutrition. Ann Surg 1980; 192: 562-569
  • 14 Smith RC, Burkinshaw L, Hill GL. Optimal energy and nitrogen intake for gastroenterological patients requiring intravenous nutrition. Gastroenterology 1982; 82: 445-452
  • 15 Serog P, Baigts F, Apfelbaum M. et al. Energy and nitrogen balances in 24 severely burned patients receiving 4 isocaloric diets of about 10 MJ/m2/day (2392 Kcalories/m2/day). Burns Incl Therm Inj 1983; 9: 422-427
  • 16 Shaw SN, Elwyn DH, Askanazi J. et al. Effects of increasing nitrogen intake on nitrogen balance and energy expenditure in nutritionally depleted adult patients receiving parenteral nutrition. Am J Clin Nutr 1983; 37: 930-940
  • 17 Clifton GL, Robertson CS, Contant CF. Enteral hyperalimentation in head injury. J Neurosurg 1985; 62: 186-193
  • 18 Twyman D, Young AB, Ott L. et al. High protein enteral feedings: a means of achieving positive nitrogen balance in head injured patients. JPEN J Parenter Enteral Nutr 1985; 9: 679-684
  • 19 Greig PD, Elwyn DH, Askanazi J. et al. Parenteral nutrition in septic patients: effect of increasing nitrogen intake. Am J Clin Nutr 1987; 46: 1040-1047
  • 20 Rees RG, Cooper TM, Beetham R. et al. Influence of energy and nitrogen contents of enteral diets on nitrogen balance: a double blind prospective controlled clinical trial. Gut 1989; 30: 123-129
  • 21 Larsson J, Lennmarken C, Martensson J. et al. Nitrogen requirements in severely injured patients. Br J Surg 1990; 77: 413-416
  • 22 Pitkanen O, Takala J, Poyhonen M. et al. Nitrogen and energy balance in septic and injured intensive care patients: response to parenteral nutrition. Clin Nutr 1991; 10: 258-265
  • 23 van der Heijden A, Verbeek MJ, Schreurs VV. et al. [Effect of increasing protein ingestion on the nitrogen balance of mechanically ventilated critically ill patients receiving total parenteral nutrition]. Nutr Hosp 1993; 8: 279-287
  • 24 Demling RH, DeSanti L. Increased protein intake during the recovery phase after severe burns increases body weight gain and muscle function. J Burn Care Rehabil 1998; 19: 161-168; discussion 160
  • 25 Scheinkestel CD, Kar L, Marshall K. et al. Prospective randomized trial to assess caloric and protein needs of critically Ill, anuric, ventilated patients requiring continuous renal replacement therapy. Nutrition 2003; 19: 909-916
  • 26 Singer P. High-dose amino acid infusion preserves diuresis and improves nitrogen balance in non-oliguric acute renal failure. Wien Klin Wochenschr 2007; 119: 218-222
  • 27 Rugeles SJ, Rueda JD, Diaz CE. et al. Hyperproteic hypocaloric enteral nutrition in the critically ill patient: A randomized controlled clinical trial. Indian J Crit Care Med 2013; 17: 343-349
  • 28 Doig GS, Simpson F, Bellomo R. et al. Intravenous amino acid therapy for kidney function in critically ill patients: a randomized controlled trial. Intensive Care Med 2015; 41: 1197-1208
  • 29 Ferrie S, Allman-Farinelli M, Daley M. et al. Protein Requirements in the Critically Ill: A Randomized Controlled Trial Using Parenteral Nutrition. JPEN J Parenter Enteral Nutr 2016; 40: 795-805
  • 30 Kreymann G, DeLegge MH, Luft G. et al. The ratio of energy expenditure to nitrogen loss in diverse patient groups – a systematic review. Clin Nutr 2012; 31: 168-175
  • 31 Casaer MP, Mesotten D, Hermans G. et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med 2011; 365: 506-517
  • 32 Casaer MP, Wilmer A, Hermans G. et al. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: a post hoc analysis. Am J Respir Crit Care Med 2013; 187: 247-255
  • 33 Fivez T, Kerklaan D, Mesotten D. et al. Early versus Late Parenteral Nutrition in Critically Ill Children. N Engl J Med 2016; 374: 1111-1122
  • 34 Davies ML, Chapple LS, Chapman MJ. et al. Protein delivery and clinical outcomes in the critically ill: a systematic review and meta-analysis. Crit Care Resusc 2017; 19: 117-127
  • 35 Koekkoek W, van Setten CHC, Olthof LE. et al. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: The PROTINVENT retrospective study. Clin Nutr 2019; 38: 883-890
  • 36 Song JH, Lee HS, Kim SY. et al. The influence of protein provision in the early phase of intensive care on clinical outcomes for critically ill patients on mechanical ventilation. Asia Pac J Clin Nutr 2017; 26: 234-240
  • 37 Compher C, Chittams J, Sammarco T. et al. Greater Protein and Energy Intake May Be Associated With Improved Mortality in Higher Risk Critically Ill Patients: A Multicenter, Multinational Observational Study. Crit Care Med 2017; 45: 156-163
  • 38 Nicolo M, Heyland DK, Chittams J. et al. Clinical Outcomes Related to Protein Delivery in a Critically Ill Population: A Multicenter, Multinational Observation Study. JPEN J Parenter Enteral Nutr 2016; 40: 45-51
  • 39 Elke G, Wang M, Weiler N. et al. Close to recommended caloric and protein intake by enteral nutrition is associated with better clinical outcome of critically ill septic patients: secondary analysis of a large international nutrition database. Crit Care 2014; 18: R29
  • 40 Zusman O, Theilla M, Cohen J. et al. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study. Crit Care 2016; 20: 367
  • 41 Allingstrup MJ, Kondrup J, Wiis J. et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial. Intensive Care Med 2017; 43: 1637-1647
  • 42 Yeh DD, Fuentes E, Quraishi SA. et al. Adequate Nutrition May Get You Home: Effect of Caloric/Protein Deficits on the Discharge Destination of Critically Ill Surgical Patients. JPEN J Parenter Enteral Nutr 2016; 40: 37-44
  • 43 Mehta NM, Bechard LJ, Zurakowski D. et al. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr 2015; 102: 199-206
  • 44 Weijs PJ, Looijaard WG, Beishuizen A. et al. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit Care 2014; 18: 701
  • 45 Peck MD, Alexander JW, Gonce SJ. et al. Low protein diets improve survival from peritonitis in guinea pigs. Ann Surg 1989; 209: 448-454
  • 46 Weijs PJ, Stapel SN, de Groot SD. et al. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN J Parenter Enteral Nutr 2012; 36: 60-68
  • 47 Allingstrup MJ, Esmailzadeh N, Wilkens Knudsen A. et al. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin Nutr 2012; 31: 462-468
  • 48 Ishibashi N, Plank LD, Sando K. et al. Optimal protein requirements during the first 2 weeks after the onset of critical illness [see comments]. Crit Care Med 1998; 26: 1529-1535
  • 49 Waterlow JC. Whole-body protein turnover in humans – past, present, and future. Annu Rev Nutr 1995; 15: 57-92
  • 50 Fosbol MO, Zerahn B. Contemporary methods of body composition measurement. Clin Physiol Funct Imaging 2015; 35: 81-97
  • 51 Kyle UG, Bosaeus I, De Lorenzo AD. et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr 2004; 23: 1430-1453
  • 52 Kyle UG, Bosaeus I, De Lorenzo AD. et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr 2004; 23: 1226-1243
  • 53 Shen W, Punyanitya M, Wang Z. et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol (1985) 2004; 97: 2333-2338
  • 54 Tillquist M, Kutsogiannis DJ, Wischmeyer PE. et al. Bedside ultrasound is a practical and reliable measurement tool for assessing quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutr 2014; 38: 886-890
  • 55 Fernandez JR, Heo M, Heymsfield SB. et al. Is percentage body fat differentially related to body mass index in Hispanic Americans, African Americans, and European Americans?. Am J Clin Nutr 2003; 77: 71-75
  • 56 Moisey LL, Mourtzakis M, Kozar RA. et al. Existing equations to estimate lean body mass are not accurate in the critically ill: Results of a multicenter observational study. Clin Nutr 2017; 36: 1701-1706
  • 57 Kreymann KG, DeLegge MH, Luft G. et al. A nutrition strategy for obese ICU patients with special consideration for the reference of protein. Clinical Nutrition ESPEN 2015; 10: e160-e166
  • 58 Hoffer LJ. How much protein do parenteral amino acid mixtures provide?. Am J Clin Nutr 2011; 94: 1396-1398
  • 59 Vaupel P, Biesalski HK. Proteine. In: Biesalski HK, Bischoff SC, Pirlich M. et al., Hrsg. Ernährungsmedizin. Stuttgart, New York: Thieme; 2018: 145-163
  • 60 Biesalski HK, Grimm P. Taschenatlas der Ernährung. Stuttgart: Thieme; 1999