Semin Neurol 2004; 24(2): 175-179
DOI: 10.1055/s-2004-830904
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Snake Venoms and the Neuromuscular Junction

Robert L. Lewis1 , Ludwig Gutmann1
  • 1Department of Neurology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
Further Information

Publication History

Publication Date:
15 July 2004 (online)

There are ∼420 venomous species of snakes living on the earth. Their venoms, each unique, can affect multiple organ systems. The venoms have a predilection for the peripheral nervous system where the neuromuscular junction is a favorite target. Those venoms affecting the release of acetylcholine from the presynaptic membrane are called β-neurotoxins and those affecting the postsynaptic membrane are called α-neurotoxins. α-Bungarotoxin has been used in quantitative studies of acetylcholine receptor density and turnover and for the assay of antibodies directed against the acetylcholine receptor. A unique feature of timber rattlesnake venom is its ability to cause clinical myokymia. This likely results from a blockade of voltage gated K+ antibodies.

REFERENCES

  • 1 Dowling H G, Duellman W E. Systematic Herpetology: A Synopsis of Families and Higher Categories. New York; Hiss Publications 1978: 100-102
  • 2 White J, Warrell D, Eddleston M, Currie B J, Whyte I M, Isbister G K. Clinical toxinology: where are we now?.  J Toxicol Clin Toxicol. 2003;  41 263-276
  • 3 Juckett G. Venomous snakebites in the United States: management review and update.  Am Fam Physician. 2002;  65 1367-1374
  • 4 Gutmann L, Gutmann L. Timber rattlesnake myokymia.  J Peripher Nerv Syst. 2003;  8 19
  • 5 Parrish H M. Incidence of treated snakebites in the United States.  Public Health Rep. 1966;  81 269-276
  • 6 Harris J B. Phospholipases in snake venoms and their effects on nerve and muscle.  Pharmacol Ther. 1985;  31 79-102
  • 7 Lee C Y. Recent advances in chemistry and pharmacology of snake toxins.  Adv Cytopharmacol. 1979;  3 1-16
  • 8 Cousin X, Bon C. Acetylcholinesterase from snake venom as a model for its nerve and muscle counterpart.  J Nat Toxins. 1999;  8 285-294
  • 9 Hodgson W C, Wickramaratna J C. In vitro neuromuscular activity of snake venoms.  Clin Exp Pharmacol Physiol. 2002;  29 807-814
  • 10 Chiappinelli V. Actions of snake venom toxins on neuronal nicotinic receptors and other neuronal receptors.  Pharmacol Ther. 1985;  31 1-32
  • 11 Conolly S, Trevett A J, Nwokolo N C et al.. Neuromuscular effects of Papuan Taipan snake venom.  Ann Neurol. 1995;  38 916-920
  • 12 Harris J B. Snake venoms in science and clinical medicine: 3. Neuropharmacological aspects of the activity of snake venoms.  Trans R Soc Trop Med Hyg. 1989;  83 745-747
  • 13 Atchison W. Effects of neurotoxicants on synaptic transmission: lessons learned from electrophysiological studies.  Neurotoxicol Teratol. 1988;  10 393-416
  • 14 Harris J B. Polypeptides from snake venoms which act on nerve and muscle.  Prog Med Chem. 1984;  21 63-110
  • 15 Dixon R, Harris J B. Myotoxic activity of the toxic phospholipase A2, β-bungarotoxin: its clinical significance.  Am J Pathol. 1999;  154 447-455
  • 16 Fatehi M, Harvey A L, Rowan E G. Characterization of the effects of depolarizing toxins on nerve terminal action potentials: apparent block of presynaptic potassium currents.  Toxicon. 1998;  36 115-129
  • 17 Harvey A L. Twenty years of dendrotoxins.  Toxicon. 2001;  39 15-26
  • 18 Simson L L, Lautenslager G T, Kaiser I I, Middlebrook J L. Identification of the site at which the phospholipase A2 neurotoxins act to produce their neuromuscular blocking effects.  Toxicon. 1993;  31 13-26
  • 19 Su M J, Chang C C. Presynaptic effects of snake venom toxins which have phospholipase A2 activity (β-bungarotoxin, taipoxin, crotoxin).  Toxicon. 1984;  22 631-640
  • 20 Yang C. Cobrotoxin. Structure and function.  J Nat Toxins. 1999;  8 221-233
  • 21 Harris J B, Grubb B D, Maltin C A, Dixon R. The neurotoxicity of the venom phospholipases A2, notexin and taipoxin.  Exp Neurol. 2000;  161 517-526
  • 22 Rugulo M J, Dolly O, Nicholis D G. The mechanism of action of β-bungarotoxin at the presynaptic plasma membrane.  Biochem J. 1986;  233 519-523
  • 23 Mebs D. Snake venoms. Toolbox of the neurobiologist.  Endeavour. 1989;  13 157-161
  • 24 Endo T, Tamiya N. Current view on the structure-function relationship of postsynaptic neurotoxins from snake venoms.  Pharmacol Ther. 1987;  34 403-451
  • 25 Brick J F, Gutmann L, Brick J, Apelgren K N, Riggs J E. Timber rattlesnake venom-induced myokymia: evidence for peripheral nerve origin.  Neurology. 1987;  37 1545-1546
  • 26 Brick J F, Gutmann L. Rattlesnake venom-induced myokymia.  Muscle Nerve. 1982;  5 S98-S100

Robert L LewisM.D. 

Department of Neurology, Robert C. Byrd Health Sciences Center, West Virginia University

One Medical Center Drive, Morgantown, WV 26505

    >