Semin Thromb Hemost 2017; 43(2): 154-168
DOI: 10.1055/s-0036-1586229
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

tPA Modulation of the Blood–Brain Barrier: A Unifying Explanation for the Pleiotropic Effects of tPA in the CNS

Linda Fredriksson
1   Division of Vascular Biology, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
2   Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
,
Daniel A. Lawrence
2   Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
3   Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
,
Robert L. Medcalf
4   Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
27 September 2016 (online)

Abstract

The plasminogen activation (PA) system is best known for its role in fibrinolysis. However, it has also been shown to regulate many nonfibrinolytic functions in the central nervous system (CNS). In particular, tissue-type plasminogen activator (tPA) is reported to have pleiotropic activities in the CNS, regulating events such as neuronal plasticity, excitotoxicity, and cerebrovascular barrier integrity, whereas urokinase-type plasminogen activator is mainly associated with tissue remodeling and cell migration. It has been suggested that the role tPA plays in controlling barrier integrity may provide a unifying mechanism for the reported diverse, and often opposing, functions ascribed to tPA in the CNS. Here we will review the possibility that the pleiotropic effects reported for tPA in physiologic and pathologic processes in the CNS may be a consequence of its role in the neurovascular unit in regulation of cerebrovascular responses and subsequently parenchymal homeostasis. We propose that this might offer an explanation for the ongoing debate regarding the neurotoxic versus neuroprotective roles of tPA.

 
  • References

  • 1 Collen D. Ham-Wasserman lecture: role of the plasminogen system in fibrin-homeostasis and tissue remodeling. Hematology (Am Soc Hematol Educ Program) 2001; •••: 1-9
  • 2 The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995; 333 (24) 1581-1587
  • 3 Li J, Yu L, Gu X , et al. Tissue plasminogen activator regulates Purkinje neuron development and survival. Proc Natl Acad Sci U S A 2013; 110 (26) E2410-E2419
  • 4 Seeds NW, Basham ME, Ferguson JE. Absence of tissue plasminogen activator gene or activity impairs mouse cerebellar motor learning. J Neurosci 2003; 23 (19) 7368-7375
  • 5 Minor K, Phillips J, Seeds NW. Tissue plasminogen activator promotes axonal outgrowth on CNS myelin after conditioned injury. J Neurochem 2009; 109 (3) 706-715
  • 6 Seeds NW, Siconolfi LB, Haffke SP. Neuronal extracellular proteases facilitate cell migration, axonal growth, and pathfinding. Cell Tissue Res 1997; 290 (2) 367-370
  • 7 Park L, Gallo EF, Anrather J , et al. Key role of tissue plasminogen activator in neurovascular coupling. Proc Natl Acad Sci USA 2008; 105 (3) 1073-1078
  • 8 Tsirka SE, Gualandris A, Amaral DG, Strickland S. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 1995; 377 (6547): 340-344
  • 9 Tsirka SE, Rogove AD, Strickland S. Neuronal cell death and tPA. Nature 1996; 384 (6605): 123-124
  • 10 Nicole O, Docagne F, Ali C , et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med 2001; 7 (1) 59-64
  • 11 Echeverry R, Wu J, Haile WB, Guzman J, Yepes M. Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus. J Clin Invest 2010; 120 (6) 2194-2205
  • 12 Tsirka SE, Rogove AD, Bugge TH, Degen JL, Strickland S. An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J Neurosci 1997; 17 (2) 543-552
  • 13 Rogove AD, Tsirka SE. Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr Biol 1998; 8 (1) 19-25
  • 14 Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 2003; 112 (10) 1533-1540
  • 15 Su EJ, Fredriksson L, Geyer M , et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med 2008; 14 (7) 731-737
  • 16 Niego B, Freeman R, Puschmann TB, Turnley AM, Medcalf RL. t-PA-specific modulation of a human blood-brain barrier model involves plasmin-mediated activation of the Rho kinase pathway in astrocytes. Blood 2012; 119 (20) 4752-4761
  • 17 Lemarchant S, Docagne F, Emery E, Vivien D, Ali C, Rubio M. tPA in the injured central nervous system: different scenarios starring the same actor?. Neuropharmacology 2012; 62 (2) 749-756
  • 18 Su EJ, Fredriksson L, Schielke GP, Eriksson U, Lawrence DA. Tissue plasminogen activator-mediated PDGF signaling and neurovascular coupling in stroke. J Thromb Haemost 2009; 7 (Suppl. 01) 155-158
  • 19 Chevilley A, Lesept F, Lenoir S, Ali C, Parcq J, Vivien D. Impacts of tissue-type plasminogen activator (tPA) on neuronal survival. Front Cell Neurosci 2015; 9: 415
  • 20 Fredriksson L, Stevenson TK, Su EJ , et al. Identification of a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol 2015; 2 (7) 722-738
  • 21 Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57 (2) 173-185
  • 22 Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 2004; 5 (5) 347-360
  • 23 Armulik A, Genové G, Mäe M , et al. Pericytes regulate the blood-brain barrier. Nature 2010; 468 (7323): 557-561
  • 24 Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7 (1) 41-53
  • 25 Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci 2007; 10 (11) 1369-1376
  • 26 Parri R, Crunelli V. An astrocyte bridge from synapse to blood flow. Nat Neurosci 2003; 6 (1) 5-6
  • 27 Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 1994; 91 (22) 10625-10629
  • 28 Leybaert L, Cabooter L, Braet K. Calcium signal communication between glial and vascular brain cells. Acta Neurol Belg 2004; 104 (2) 51-56
  • 29 Wu F, Wu J, Nicholson AD , et al. Tissue-type plasminogen activator regulates the neuronal uptake of glucose in the ischemic brain. J Neurosci 2012; 32 (29) 9848-9858
  • 30 Pawlak R, Melchor JP, Matys T, Skrzypiec AE, Strickland S. Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors. Proc Natl Acad Sci U S A 2005; 102 (2) 443-448
  • 31 Parcq J, Bertrand T, Montagne A , et al. Unveiling an exceptional zymogen: the single-chain form of tPA is a selective activator of NMDA receptor-dependent signaling and neurotoxicity. Cell Death Differ 2012; 19 (12) 1983-1991
  • 32 Hawkins RA. The blood-brain barrier and glutamate. Am J Clin Nutr 2009; 90 (3) 867S-874S
  • 33 Stobart JL, Anderson CM. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 2013; 7: 38
  • 34 Zlokovic BV, Wang L, Sun N , et al. Expression of tissue plasminogen activator in cerebral capillaries: possible fibrinolytic function of the blood-brain barrier. Neurosurgery 1995; 37 (5) 955-961
  • 35 Huber D, Cramer EM, Kaufmann JE , et al. Tissue-type plasminogen activator (t-PA) is stored in Weibel-Palade bodies in human endothelial cells both in vitro and in vivo. Blood 2002; 99 (10) 3637-3645
  • 36 Qian Z, Gilbert ME, Colicos MA, Kandel ER, Kuhl D. Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 1993; 361 (6411): 453-457
  • 37 Salles FJ, Strickland S. Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus. J Neurosci 2002; 22 (6) 2125-2134
  • 38 Docagne F, Nicole O, Marti HH, MacKenzie ET, Buisson A, Vivien D. Transforming growth factor-beta1 as a regulator of the serpins/t-PA axis in cerebral ischemia. FASEB J 1999; 13 (11) 1315-1324
  • 39 Sappino AP, Madani R, Huarte J , et al. Extracellular proteolysis in the adult murine brain. J Clin Invest 1993; 92 (2) 679-685
  • 40 Yu H, Schleuning WD, Michl M, Liberatore G, Tan SS, Medcalf RL. Control elements between -9.5 and −3.0 kb in the human tissue-type plasminogen activator gene promoter direct spatial and inducible expression to the murine brain. Eur J Neurosci 2001; 14 (5) 799-808
  • 41 Louessard M, Lacroix A, Martineau M , et al. Tissue plasminogen activator expression is restricted to subsets of excitatory pyramidal glutamatergic neurons. Mol Neurobiol 2015; DOI: 10.1007/s12035-015-9432-7.
  • 42 Teesalu T, Kulla A, Simisker A , et al. Tissue plasminogen activator and neuroserpin are widely expressed in the human central nervous system. Thromb Haemost 2004; 92 (2) 358-368
  • 43 Gualandris A, Jones TE, Strickland S, Tsirka SE. Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. J Neurosci 1996; 16 (7) 2220-2225
  • 44 Lochner JE, Honigman LS, Grant WF , et al. Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging. J Neurobiol 2006; 66 (6) 564-577
  • 45 Cauli B, Tong XK, Rancillac A , et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci 2004; 24 (41) 8940-8949
  • 46 Hamel E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol (1985) 2006; 100 (3) 1059-1064
  • 47 Sawdey MS, Loskutoff DJ. Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-alpha, and transforming growth factor-beta. J Clin Invest 1991; 88 (4) 1346-1353
  • 48 Schrimpf SP, Bleiker AJ, Brecevic L , et al. Human neuroserpin (PI12): cDNA cloning and chromosomal localization to 3q26. Genomics 1997; 40 (1) 55-62
  • 49 Yamamoto M, Sawaya R, Mohanam S , et al. Expression and cellular localization of messenger RNA for plasminogen activator inhibitor type 1 in human astrocytomas in vivo. Cancer Res 1994; 54 (13) 3329-3332
  • 50 Kietzmann T, Roth U, Jungermann K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood 1999; 94 (12) 4177-4185
  • 51 Masos T, Miskin R. mRNAs encoding urokinase-type plasminogen activator and plasminogen activator inhibitor-1 are elevated in the mouse brain following kainate-mediated excitation. Brain Res Mol Brain Res 1997; 47 (1–2) 157-169
  • 52 Osterwalder T, Cinelli P, Baici A , et al. The axonally secreted serine proteinase inhibitor, neuroserpin, inhibits plasminogen activators and plasmin but not thrombin. J Biol Chem 1998; 273 (4) 2312-2321
  • 53 Osterwalder T, Contartese J, Stoeckli ET, Kuhn TB, Sonderegger P. Neuroserpin, an axonally secreted serine protease inhibitor. EMBO J 1996; 15 (12) 2944-2953
  • 54 Hastings GA, Coleman TA, Haudenschild CC , et al. Neuroserpin, a brain-associated inhibitor of tissue plasminogen activator is localized primarily in neurons. Implications for the regulation of motor learning and neuronal survival. J Biol Chem 1997; 272 (52) 33062-33067
  • 55 Yepes M, Lawrence DA. Neuroserpin: a selective inhibitor of tissue-type plasminogen activator in the central nervous system. Thromb Haemost 2004; 91 (3) 457-464
  • 56 Wu J, Echeverry R, Guzman J, Yepes M. Neuroserpin protects neurons from ischemia-induced plasmin-mediated cell death independently of tissue-type plasminogen activator inhibition. Am J Pathol 2010; 177 (5) 2576-2584
  • 57 Lee TW, Coates LC, Birch NP. Neuroserpin regulates N-cadherin-mediated cell adhesion independently of its activity as an inhibitor of tissue plasminogen activator. J Neurosci Res 2008; 86 (6) 1243-1253
  • 58 Lee TW, Tsang VW, Birch NP. Physiological and pathological roles of tissue plasminogen activator and its inhibitor neuroserpin in the nervous system. Front Cell Neurosci 2015; 9: 396
  • 59 Wang X, Lee SR, Arai K , et al. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med 2003; 9 (10) 1313-1317
  • 60 Cheng T, Petraglia AL, Li Z , et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med 2006; 12 (11) 1278-1285
  • 61 Griffin JH, Zlokovic BV, Mosnier LO. Activated protein C: biased for translation. Blood 2015; 125 (19) 2898-2907
  • 62 Bruno MA, Cuello AC. Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci U S A 2006; 103 (17) 6735-6740
  • 63 Pang PT, Teng HK, Zaitsev E , et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 2004; 306 (5695): 487-491
  • 64 Fredriksson L, Li H, Fieber C, Li X, Eriksson U. Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO J 2004; 23 (19) 3793-3802
  • 65 Bu G, Williams S, Strickland DK, Schwartz AL. Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor is an hepatic receptor for tissue-type plasminogen activator. Proc Natl Acad Sci U S A 1992; 89 (16) 7427-7431
  • 66 Herz J. LRP: a bright beacon at the blood-brain barrier. J Clin Invest 2003; 112 (10) 1483-1485
  • 67 Siao CJ, Tsirka SE. Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci 2002; 22 (9) 3352-3358
  • 68 Correa F, Gauberti M, Parcq J , et al. Tissue plasminogen activator prevents white matter damage following stroke. J Exp Med 2011; 208 (6) 1229-1242
  • 69 Carmeliet P, Schoonjans L, Kieckens L , et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 1994; 368 (6470): 419-424
  • 70 Yepes M. Tissue-type plasminogen activator is a neuroprotectant in the central nervous system. Front Cell Neurosci 2015; 9: 304
  • 71 Szabo R, Samson AL, Lawrence DA, Medcalf RL, Bugge TH. Passenger mutations and aberrant gene expression in congenic tissue plasminogen activator-deficient mouse strains. J Thromb Haemost 2016; DOI: 10.1111/jth.13338.
  • 72 Friedman GC, Seeds NW. Tissue plasminogen activator expression in the embryonic nervous system. Brain Res Dev Brain Res 1994; 81 (1) 41-49
  • 73 Krystosek A, Seeds NW. Plasminogen activator release at the neuronal growth cone. Science 1981; 213 (4515): 1532-1534
  • 74 Lee SH, Ko HM, Kwon KJ , et al. tPA regulates neurite outgrowth by phosphorylation of LRP5/6 in neural progenitor cells. Mol Neurobiol 2014; 49 (1) 199-215
  • 75 Seeds NW, Basham ME, Haffke SP. Neuronal migration is retarded in mice lacking the tissue plasminogen activator gene. Proc Natl Acad Sci U S A 1999; 96 (24) 14118-14123
  • 76 Stefanitsch C, Lawrence A-LE, Olverling A, Nilsson I, Fredriksson L. tPA deficiency in mice leads to rearrangement in the cerebrovascular tree and cerebroventricular malformations. Front Cell Neurosci 2015; 9: 456
  • 77 Fredriksson L, Nilsson I, Su EJ , et al. Platelet-derived growth factor C deficiency in C57BL/6 mice leads to abnormal cerebral vascularization, loss of neuroependymal integrity, and ventricular abnormalities. Am J Pathol 2012; 180 (3) 1136-1144
  • 78 Chai F, Coates H. Otolaryngological manifestations of ligneous conjunctivitis. Int J Pediatr Otorhinolaryngol 2003; 67 (2) 189-194
  • 79 Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science 2001; 294 (5544): 1030-1038
  • 80 Frey U, Müller M, Kuhl D. A different form of long-lasting potentiation revealed in tissue plasminogen activator mutant mice. J Neurosci 1996; 16 (6) 2057-2063
  • 81 Huang YY, Bach ME, Lipp HP , et al. Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc Natl Acad Sci U S A 1996; 93 (16) 8699-8704
  • 82 Pawlak R, Nagai N, Urano T , et al. Rapid, specific and active site-catalyzed effect of tissue-plasminogen activator on hippocampus-dependent learning in mice. Neuroscience 2002; 113 (4) 995-1001
  • 83 Seeds NW, Williams BL, Bickford PC. Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science 1995; 270 (5244): 1992-1994
  • 84 Müller CM, Griesinger CB. Tissue plasminogen activator mediates reverse occlusion plasticity in visual cortex. Nat Neurosci 1998; 1 (1) 47-53
  • 85 Baranes D, Lederfein D, Huang YY, Chen M, Bailey CH, Kandel ER. Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 1998; 21 (4) 813-825
  • 86 Madani R, Hulo S, Toni N , et al. Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J 1999; 18 (11) 3007-3012
  • 87 Zhuo M, Holtzman DM, Li Y , et al. Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci 2000; 20 (2) 542-549
  • 88 Blau CW, Cowley TR, O'Sullivan J , et al. The age-related deficit in LTP is associated with changes in perfusion and blood-brain barrier permeability. Neurobiol Aging 2012; 33 (5) 1005.e23-1005.e35
  • 89 Hsu TM, Kanoski SE. Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia. Front Aging Neurosci 2014; 6: 88
  • 90 Takano T, Tian GF, Peng W , et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006; 9 (2) 260-267
  • 91 Levin EG, del Zoppo GJ. Localization of tissue plasminogen activator in the endothelium of a limited number of vessels. Am J Pathol 1994; 144 (5) 855-861
  • 92 Cipolla MJ, Lessov N, Clark WM, Haley Jr EC. Postischemic attenuation of cerebral artery reactivity is increased in the presence of tissue plasminogen activator. Stroke 2000; 31 (4) 940-945
  • 93 Nassar T, Akkawi S, Shina A , et al. In vitro and in vivo effects of tPA and PAI-1 on blood vessel tone. Blood 2004; 103 (3) 897-902
  • 94 Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 2015; 87 (1) 95-110
  • 95 An J, Haile WB, Wu F, Torre E, Yepes M. Tissue-type plasminogen activator mediates neuroglial coupling in the central nervous system. Neuroscience 2014; 257: 41-48
  • 96 Li B, Freeman RD. Neurometabolic coupling between neural activity, glucose, and lactate in activated visual cortex. J Neurochem 2015; 135 (4) 742-754
  • 97 Aoki T, Sumii T, Mori T, Wang X, Lo EH. Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke 2002; 33 (11) 2711-2717
  • 98 Zhang Z, Zhang L, Yepes M , et al. Adjuvant treatment with neuroserpin increases the therapeutic window for tissue-type plasminogen activator administration in a rat model of embolic stroke. Circulation 2002; 106 (6) 740-745
  • 99 Yao Y, Tsirka SE. Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood-brain barrier disruption. J Cell Sci 2011; 124 (Pt 9): 1486-1495
  • 100 Fredriksson L, Ehnman M, Fieber C, Eriksson U. Structural requirements for activation of latent platelet-derived growth factor CC by tissue plasminogen activator. J Biol Chem 2005; 280 (29) 26856-26862
  • 101 Medcalf RL. Desmoteplase: discovery, insights and opportunities for ischaemic stroke. Br J Pharmacol 2012; 165 (1) 75-89
  • 102 Roger VL, Go AS, Lloyd-Jones DM , et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 2012; 125 (1) e2-e220
  • 103 Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 1982; 257 (6) 2912-2919
  • 104 Verheijen JH, Caspers MP, Chang GT, de Munk GA, Pouwels PH, Enger-Valk BE. Involvement of finger domain and kringle 2 domain of tissue-type plasminogen activator in fibrin binding and stimulation of activity by fibrin. EMBO J 1986; 5 (13) 3525-3530
  • 105 Weimar W, Stibbe J, van Seyen AJ, Billiau A, De Somer P, Collen D. Specific lysis of an iliofemoral thrombus by administration of extrinsic (tissue-type) plasminogen activator. Lancet 1981; 2 (8254): 1018-1020
  • 106 Tsirka SE. Clinical implications of the involvement of tPA in neuronal cell death. J Mol Med (Berl) 1997; 75 (5) 341-347
  • 107 Wang YF, Tsirka SE, Strickland S, Stieg PE, Soriano SG, Lipton SA. Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med 1998; 4 (2) 228-231
  • 108 del Zoppo GJ. tPA: a neuron buster, too?. Nat Med 1998; 4 (2) 148-150
  • 109 Mori T, Wang X, Kline AE , et al. Reduced cortical injury and edema in tissue plasminogen activator knockout mice after brain trauma. Neuroreport 2001; 12 (18) 4117-4120
  • 110 Tanne D, Kasner SE, Demchuk AM , et al. Markers of increased risk of intracerebral hemorrhage after intravenous recombinant tissue plasminogen activator therapy for acute ischemic stroke in clinical practice: the Multicenter rt-PA Stroke Survey. Circulation 2002; 105 (14) 1679-1685
  • 111 Hacke W, Donnan G, Fieschi C , et al; ATLANTIS Trials Investigators; ECASS Trials Investigators; NINDS rt-PA Study Group Investigators. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet 2004; 363 (9411): 768-774
  • 112 Hill MD, Buchan AM ; Canadian Alteplase for Stroke Effectiveness Study (CASES) Investigators. Thrombolysis for acute ischemic stroke: results of the Canadian Alteplase for Stroke Effectiveness Study. CMAJ 2005; 172 (10) 1307-1312
  • 113 Lansberg MG, Albers GW, Wijman CA. Symptomatic intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke: a review of the risk factors. Cerebrovasc Dis 2007; 24 (1) 1-10
  • 114 Kleindorfer D, de los Rios La Rosa F, Khatri P, Kissela B, Mackey J, Adeoye O. Temporal trends in acute stroke management. Stroke 2013; 44 (6) (Suppl. 01) S129-S131
  • 115 Prabhakaran S, Ruff I, Bernstein RA. Acute stroke intervention: a systematic review. JAMA 2015; 313 (14) 1451-1462
  • 116 Ahmed N, Wahlgren N, Grond M , et al; SITS investigators. Implementation and outcome of thrombolysis with alteplase 3-4.5 h after an acute stroke: an updated analysis from SITS-ISTR. Lancet Neurol 2010; 9 (9) 866-874
  • 117 Wardlaw JM, Murray V, Berge E , et al. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet 2012; 379 (9834): 2364-2372
  • 118 Saver JL, Fonarow GC, Smith EE , et al. Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. JAMA 2013; 309 (23) 2480-2488
  • 119 Emberson J, Lees KR, Lyden P , et al; Stroke Thrombolysis Trialists' Collaborative Group. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 2014; 384 (9958): 1929-1935
  • 120 Yepes M, Sandkvist M, Wong MK , et al. Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood 2000; 96 (2) 569-576
  • 121 Cinelli P, Madani R, Tsuzuki N , et al. Neuroserpin, a neuroprotective factor in focal ischemic stroke. Mol Cell Neurosci 2001; 18 (5) 443-457
  • 122 Tabrizi P, Wang L, Seeds N , et al. Tissue plasminogen activator (tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model: studies in tPA-deficient mice and wild-type mice on a matched genetic background. Arterioscler Thromb Vasc Biol 1999; 19 (11) 2801-2806
  • 123 Matys T, Strickland S. Tissue plasminogen activator and NMDA receptor cleavage. Nat Med 2003; 9 (4) 371-372 , author reply 372–373
  • 124 Samson AL, Nevin ST, Croucher D , et al. Tissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor function. J Neurochem 2008; 107 (4) 1091-1101
  • 125 Kidwell CS, Latour L, Saver JL , et al; UCLA Thrombolysis Investigators. Thrombolytic toxicity: blood brain barrier disruption in human ischemic stroke. Cerebrovasc Dis 2008; 25 (4) 338-343
  • 126 Stanimirovic DB, Friedman A. Pathophysiology of the neurovascular unit: disease cause or consequence?. J Cereb Blood Flow Metab 2012; 32 (7) 1207-1221
  • 127 Bardehle S, Rafalski VA, Akassoglou K. Breaking boundaries-coagulation and fibrinolysis at the neurovascular interface. Front Cell Neurosci 2015; 9: 354
  • 128 Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 2000; 20 (12) 1681-1689
  • 129 Copin JC, Merlani P, Sugawara T, Chan PH, Gasche Y. Delayed matrix metalloproteinase inhibition reduces intracerebral hemorrhage after embolic stroke in rats. Exp Neurol 2008; 213 (1) 196-201
  • 130 Zhao BQ, Wang S, Kim HY , et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 2006; 12 (4) 441-445
  • 131 Copin JC, Bengualid DJ, Da Silva RF, Kargiotis O, Schaller K, Gasche Y. Recombinant tissue plasminogen activator induces blood-brain barrier breakdown by a matrix metalloproteinase-9-independent pathway after transient focal cerebral ischemia in mouse. Eur J Neurosci 2011; 34 (7) 1085-1092
  • 132 Rodríguez-González R, Blanco M, Rodríguez-Yáñez M, Moldes O, Castillo J, Sobrino T. Platelet derived growth factor-CC isoform is associated with hemorrhagic transformation in ischemic stroke patients treated with tissue plasminogen activator. Atherosclerosis 2013; 226 (1) 165-171
  • 133 Chatterjee S, Chakraborty A, Weinberg I , et al. Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis. JAMA 2014; 311 (23) 2414-2421
  • 134 Gurwitz JH, Gore JM, Goldberg RJ , et al. Risk for intracranial hemorrhage after tissue plasminogen activator treatment for acute myocardial infarction. Participants in the National Registry of Myocardial Infarction 2. Ann Intern Med 1998; 129 (8) 597-604
  • 135 Turner RJ, Vink R. Combined tissue plasminogen activator and an NK1 tachykinin receptor antagonist: an effective treatment for reperfusion injury following acute ischemic stroke in rats. Neuroscience 2012; 220: 1-10
  • 136 Su EJ, Fredriksson L, Kanzawa M , et al. Imatinib treatment reduces brain injury in a murine model of traumatic brain injury. Front Cell Neurosci 2015; 9: 385
  • 137 Lewandowski SA, Nilsson I, Fredriksson L , et al. Presymptomatic activation of the PDGF-CC pathway accelerates onset of ALS neurodegeneration. Acta Neuropathol 2016; 131 (3) 453-464
  • 138 Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 2010; 6 (7) 393-403
  • 139 Nagai N, De Mol M, Lijnen HR, Carmeliet P, Collen D. Role of plasminogen system components in focal cerebral ischemic infarction: a gene targeting and gene transfer study in mice. Circulation 1999; 99 (18) 2440-2444
  • 140 Matsuoka Y, Kitamura Y, Taniguchi T. Induction of plasminogen in rat hippocampal pyramidal neurons by kainic acid. Neurosci Lett 1998; 252 (2) 119-122
  • 141 Palmer AM, Marion DW, Botscheller ML, Swedlow PE, Styren SD, DeKosky ST. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem 1993; 61 (6) 2015-2024
  • 142 Armstead WM, Nassar T, Akkawi S , et al. Neutralizing the neurotoxic effects of exogenous and endogenous tPA. Nat Neurosci 2006; 9 (9) 1150-1155
  • 143 Armstead WM, Kiessling JW, Riley J, Cines DB, Higazi AA. tPA contributes to impaired NMDA cerebrovasodilation after traumatic brain injury through activation of JNK MAPK. Neurol Res 2011; 33 (7) 726-733
  • 144 Sashindranath M, Samson AL, Downes CE , et al. Compartment- and context-specific changes in tissue-type plasminogen activator (tPA) activity following brain injury and pharmacological stimulation. Lab Invest 2011; 91 (7) 1079-1091
  • 145 Sashindranath M, Sales E, Daglas M , et al. The tissue-type plasminogen activator-plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans. Brain 2012; 135 (Pt 11): 3251-3264
  • 146 Orth K, Willnow T, Herz J, Gething MJ, Sambrook J. Low density lipoprotein receptor-related protein is necessary for the internalization of both tissue-type plasminogen activator-inhibitor complexes and free tissue-type plasminogen activator. J Biol Chem 1994; 269 (33) 21117-21122
  • 147 Ashcom JD, Tiller SE, Dickerson K, Cravens JL, Argraves WS, Strickland DK. The human alpha 2-macroglobulin receptor: identification of a 420-kD cell surface glycoprotein specific for the activated conformation of alpha 2-macroglobulin. J Cell Biol 1990; 110 (4) 1041-1048
  • 148 Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 2008; 88 (3) 887-918
  • 149 Yepes M, Sandkvist M, Coleman TA , et al. Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. J Clin Invest 2002; 109 (12) 1571-1578
  • 150 Tan ML, Ng A, Pandher PS , et al. Tissue plasminogen activator does not alter development of acquired epilepsy. Epilepsia 2012; 53 (11) 1998-2004
  • 151 Hassanien SH, Awadalla MM, Saad AA, Aziz NAA. Tissue plasminogen activator in children with idiopathic and intractable epilepsies. J Pediatr Neurol 2010; 8 (2) 193-197
  • 152 Schuele SU, Lüders HO. Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol 2008; 7 (6) 514-524
  • 153 Janigro D. Does leakage of the blood-brain barrier mediate epileptogenesis?. Epilepsy Curr 2007; 7 (4) 105-107
  • 154 Marchi N, Angelov L, Masaryk T , et al. Seizure-promoting effect of blood-brain barrier disruption. Epilepsia 2007; 48 (4) 732-742
  • 155 Friedman A, Kaufer D, Heinemann U. Blood-brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res 2009; 85 (2–3) 142-149
  • 156 Marchi N, Tierney W, Alexopoulos AV, Puvenna V, Granata T, Janigro D. The etiological role of blood-brain barrier dysfunction in seizure disorders. Cardiovasc Psychiatry Neurol 2011; 2011
  • 157 Reddrop C, Moldrich RX, Beart PM , et al. Vampire bat salivary plasminogen activator (desmoteplase) inhibits tissue-type plasminogen activator-induced potentiation of excitotoxic injury. Stroke 2005; 36 (6) 1241-1246
  • 158 Mayhan WG, Didion SP. Glutamate-induced disruption of the blood-brain barrier in rats. Role of nitric oxide. Stroke 1996; 27 (5) 965-969 , discussion 970
  • 159 Tian GF, Azmi H, Takano T , et al. An astrocytic basis of epilepsy. Nat Med 2005; 11 (9) 973-981