Rofo 2015; 187(06): 440-444
DOI: 10.1055/s-0034-1399006
Chest
© Georg Thieme Verlag KG Stuttgart · New York

Lung Infarction Following Pulmonary Embolism: A Comparative Study on Clinical Conditions and CT Findings to Identify Predisposing Factors

Prädisponierende Faktoren postembolischer Lungeninfarkte: eine Vergleichsanalyse von klinischen und computertomografischen Befunden.
J. Kirchner
1   Radiology, General Hospital Hagen, Germany
,
A. Obermann
1   Radiology, General Hospital Hagen, Germany
,
S. Stückradt
1   Radiology, General Hospital Hagen, Germany
,
C. Tüshaus
1   Radiology, General Hospital Hagen, Germany
,
J. Goltz
2   Radiology, University Hospital Würzburg, Germany
,
D. Liermann
3   Radiology, University Hospital Marienhospital Herne, Germany
,
R. Kickuth
2   Radiology, University Hospital Würzburg, Germany
› Author Affiliations
Further Information

Publication History

16 February 2014

22 December 2014

Publication Date:
06 March 2015 (online)

Abstract

Purpose: The aim of this study was to identify factors predisposing to lung infarction in patients with pulmonary embolism (PE).

Materials and Methods: We performed a retrospective analysis on 154 patients with the final diagnosis of PE being examined between January 2009 and December 2012 by means of a Toshiba Aquilion 64 CT scanner. The severity of clinical symptoms was defined by means of a clinical index with 4 classes. The pulmonary clot load was quantified using a modified severity index of PE as proposed by Miller. We correlated several potential predictors of pulmonary infarction such as demographic data, pulmonary clot burden, distance of total vascular obstruction and pleura, the presence of cardiac congestion, signs of chronic bronchitis or emphysema with the occurrence of pulmonary infarction.

Results: Computed tomography revealed 78 areas of pulmonary infarction in 45/154 (29.2 %) patients. The presence of infarction was significantly higher in the right lung than in the left lung (p < 0.001). We found no correlation between pulmonary infarction and the presence of accompanying malignant diseases (r = –0.069), signs of chronic bronchitis (r = –0.109), cardiac congestion (r = –0.076), the quantified clot burden score (r = 0.176), and the severity of symptoms (r = –0.024). Only a very weak negative correlation between the presence of infarction and age (r = –0.199) was seen. However, we could demonstrate a moderate negative correlation between the distance of total vascular occlusion and the occurrence of infarction (r = –0.504).

Conclusion: Neither cardiac congestion nor the degree of pulmonary vascular obstruction are main factors predisposing to pulmonary infarction in patients with PE. It seems that a peripheral total vascular obstruction more often results in infarction than even massive central clot burden.

Key points:

• A peripheral location of vascular occlusion is the main factor predisposing to pulmonary infarction.

Citation Format:

• Kirchner J, Obermann A, Stückradt S et al. Lung Infarction Following Pulmonary Embolism: A Comparative Study on Clinical Conditions and CT Findings to Identify Predisposing Factors. Fortschr Röntgenstr 2015; 187: 440 – 444

Zusammenfassung

Zielsetzung: Ziel der vorgelegten Arbeit war es, begünstigende Faktoren für das Auftreten eines Infarktes zu finden.

Material und Methoden: Hierzu erfolgte eine retrospektive Analyse von 154 Patienten, bei denen zwischen Januar 2009 und Dezember 2012 anhand einer computertomografischen Untersuchung (Toshiba Aquilion 64) eine Lungenembolie diagnostiziert worden war. Die Schwere der klinischen Symptomatik wurde in 4 Gruppen unterteilt, die embolische Thrombuslast mittels eines modifizierten Miller-Scores quantifiziert. Wir korrelierten das Infarktauftreten mit verschiedenen möglichen prädisponierenden Faktoren wie demografischen Daten, Thrombuslast, dem Abstand zwischen kompletter Gefäßverlegung und der Pleura und computertomografischen Zeichen von kardialer Stauung, chronischer Bronchitis oder Emphysem.

Ergebnisse: Die computertomografische Untersuchung zeigte 78 Infarktzonen bei 45/154 (29,2 %) Patienten, wobei diese signifikant häufiger die rechte Lunge betrafen (p < 0,001). Es zeigten sich weder Korrelationen zwischen einer Infarktbildung und dem Vorliegen einer malignen Begleitdiagnose (r = –0,069), computertomografischen Zeichen der chronischen Bronchitis (r = –0,109) oder Linksherzinsuffizienz (r = –0,076), der Thrombuslast (r = 0,176) noch der Schwere der klinischen Symptomatik (r = –0,024). Eine allenfalls ganz schwache Korrelation zeigte sich zwischen Infarktauftreten und dem Lebensalter (r = –0,199). Unsere Ergebnisse belegten andererseits eine moderate negative Korrelation zwischen der Distanz von kompletter Gefäßverlegung und der abhängigen Pleura (r = –0,504).

Schlussfolgerung: Unsere Ergebnisse zeigen, dass weder Linksherzinsuffizienz oder die absolute Thrombuslast Hauptfaktoren für eine Infarktbildung sind; diese scheint hingegen im Wesentlichen durch die weit periphere Lage des thromboembolischen Verschlusses determiniert zu werden.

Kernaussagen:

• Die weit periphere Lage des thromboembolischen Verschlusses ist der wichtigste pathophysiologischen Faktor in der Infarktentwicklung.

 
  • References

  • 1 Giuntini C, Di Ricco G, Marini C et al. Pulmonary embolism: epidemiology. Chest 107 (1995) 3S-9S
  • 2 Mordeglia F, Ríos J, Dutrey D et al. Anatomoclinical study of pulmonary embolism in patients with or without pulmonary infarction. Medicina (B Aires) 1965; 25: 360-368
  • 3 Katsumura Y, Ohtsubo KI. Correlation between clinical and pathological features of pulmonary thromboemboli and the development of infarcts. Respirology 1998; 3: 203-206
  • 4 Montgomery JT. Pulmonary embolism and infarction. J Natl Med Assoc 1965; 57: 383-393
  • 5 Tsao MS, Schraufnagel D, Wang NS. Pathogenesis of pulmonary infarction. Am J Med 1982; 72: 599-606
  • 6 Roach HD, Laufman H. Relationship between pulmonary embolism and pulmonary embolism and pulmonary infarction: an experimental study. Ann Surg 1955; 142: 82-91
  • 7 Stein PD, Henry JW. Acute Pulmonary Embolism Presenting as Pulmonary Hemorrhage/ Infarction Syndrome in the Elderly. Am J Geriatr Cardiol 1998; 7: 36-42
  • 8 He H, Stein MW, Zalta B et al. Pulmonary infarction: spectrum of findings on multidetector helical CT. J Thorac Imaging 2006; 21: 1-7
  • 9 Schraufnagel DE, Tsao MS, Yao YT et al. Factors associated with pulmonary infarction. A discriminant analysis study. Am J Clin Pathol 1985; 84: 15-18
  • 10 Jenkins D, Mayer E, Screaton N et al. State-of-the-art chronic thromboembolic pulmonary hypertension diagnosis and management. Eur Respir Rev 2012; 21 (123) 32-39
  • 11 Miller GA, Sutton GC, Kerr IH et al. Comparison of streptokinase and heparin in treatment of isolated acute massive pulmonary embolism. Br Med J 1971; 2: 681-684
  • 12 Revel MP, Triki R, Chatellier G et al. Is It possible to recognize pulmonary infarction on multisection CT images?. Radiology 2007; 244: 875-882
  • 13 Awadh N, Müller NL, Park CS et al. Airway wall thickness in patients with near fatal asthma and control groups: assessment with high resolution computed tomographic scanning. Thorax 1998; 53: 248-253
  • 14 Grosser KD. Lung embolism. Diagnosis and differential therapeutic problems. Internist (Berl) 1980; 21 (05) 273-282
  • 15 Sinner WN. Computed tomographic patterns of pulmonary thromboembolism and infarction. J Comput Assist Tomogr 1978; 2: 395-399
  • 16 Apfaltrer P, Henzler T, Meyer M et al. Correlation of CT angiographic pulmonary artery obstruction scores with right ventricular dysfunction and clinical outcome in patients with acute pulmonary embolism. Eur J Radiol 2012; 81: 2867-2871
  • 17 Engelke C, Rummeny EJ, Marten K. Acute pulmonary embolism on MDCT of the chest: prediction of cor pulmonale and short-term patient survival from morphologic embolus burden. Am J Roentgenol Am J Roentgenol 2006; 186: 1265-1271
  • 18 Furlan A, Aghayev A, Chang CC et al. Short-term Mortality in Acute Pulmonary Embolism: Clot Burden and Signs of Right Heart Dysfunction at CT Pulmonary Angiography. Radiology 2012; 265: 283-293
  • 19 Heyer CM, Lemburg SP, Knoop H et al. Multidetector-CT angiography in pulmonary embolism-can image parameters predict clinical outcome?. Eur Radiol 2011; 21: 1928-1937
  • 20 Mastora I, Remy-Jardin M, Masson P et al. Severity of acute pulmonary embolism: evaluation of a new spiral CT angiographic score in correlation with echocardiographic data. Eur Radiol 2003; 13: 29-35
  • 21 Moroni AL, Bosson JL, Hohn N et al. Non-severe pulmonary embolism: prognostic CT findings. Eur J Radiol 2011; 79: 452-458
  • 22 Venkatesh SK, Wang SC. Central clot score at computed tomography as a predictor of 30-day mortality after acute pulmonary embolism. Ann Acad Med Singapore 2010; 39: 442-447
  • 23 Balakrishnan J, Meziane MA, Siegelman SS et al. Pulmonary infarction: CT appearance with pathologic correlation. J Comput Assist Tomogr 1989; 13: 941-945
  • 24 Chintapalli K, Thorsen MK, Olson DL et al. Computed tomography of pulmonary thromboembolism and infarction. J Comput Assist Tomogr 1988; 12: 553-559
  • 25 Ren H, Kuhlman JE, Hruban RH et al. CT of inflation-fixed lungs: wedge-shaped density and vascular sign in the diagnosis of infarction. J Comput Assist Tomogr 1990; 14: 82-86
  • 26 Ohtsubo M. Computerized tomography in pulmonary infarction. Nihon Igaku Hoshasen Gakkai Zasshi 1992; 52: 600-610
  • 27 Karsner HT, Ghoreyeb AA. Studies in infarction: III. The circulation in experimental pulmonary embolism. J Exp Med 1913; 18: 507-511
  • 28 White RH. The epidemiology of venous thromboembolism. Circulation 2003; 107 (Suppl. 01) S4-S8
  • 29 Anderson Jr FA, Spencer FA. Risk factors for venous thromboembolism. Circulation 2003; 107 (Suppl. 01) S9-S16