Gastroenterology

Gastroenterology

Volume 153, Issue 3, September 2017, Pages 711-722
Gastroenterology

Original Research
Full Report: Clinical—Alimentary Tract
Prebiotics Reduce Body Fat and Alter Intestinal Microbiota in Children Who Are Overweight or With Obesity

https://doi.org/10.1053/j.gastro.2017.05.055Get rights and content
Under a Creative Commons license
open access

Background & Aims

It might be possible to manipulate the intestinal microbiota with prebiotics or other agents to prevent or treat obesity. However, little is known about the ability of prebiotics to specifically modify gut microbiota in children with overweight/obesity or reduce body weight. We performed a randomized controlled trial to study the effects of prebiotics on body composition, markers of inflammation, bile acids in fecal samples, and composition of the intestinal microbiota in children with overweight or obesity.

Methods

We performed a single-center, double-blind, placebo-controlled trial of 2 separate cohorts (March 2014 and August 2014) at the University of Calgary in Canada. Participants included children, 7–12 years old, with overweight or obesity (>85th percentile of body mass index) but otherwise healthy. Participants were randomly assigned to groups given either oligofructose-enriched inulin (OI; 8 g/day; n=22) or maltodextrin placebo (isocaloric dose, controls; n=20) once daily for 16 weeks. Fat mass and lean mass were measured using dual-energy-x-ray absorptiometry. Height, weight, and waist circumference were measured at baseline and every 4 weeks thereafter. Blood samples were collected at baseline and 16 weeks, and analyzed for lipids, cytokines, lipopolysaccharide, and insulin. Fecal samples were collected at baseline and 16 weeks; bile acids were profiled using high-performance liquid chromatography and the composition of the microbiota was analyzed by 16S rRNA sequencing and quantitative polymerase chain reaction. The primary outcome was change in percent body fat from baseline to 16 weeks.

Results

After 16 weeks, children who consumed OI had significant decreases in body weight z-score (decrease of 3.1%), percent body fat (decrease of 2.4%), and percent trunk fat (decrease of 3.8%) compared with children given placebo (increase of 0.5%, increase of 0.05%, and decrease of 0.3%, respectively). Children who consumed OI also had a significant reduction in level of interleukin 6 from baseline (decrease of 15%) compared with the placebo group (increase of 25%). There was a significant decrease in serum triglycerides (decrease of 19%) in the OI group. Quantitative polymerase chain reaction showed a significant increase in Bifidobacterium spp. in the OI group compared with controls. 16S rRNA sequencing revealed significant increases in species of the genus Bifidobacterium and decreases in Bacteroides vulgatus within the group who consumed OI. In fecal samples, levels of primary bile acids increased in the placebo group but not in the OI group over the 16-week study period.

Conclusions

In a placebo-controlled, randomized trial, we found a prebiotic (OI) to selectively alter the intestinal microbiota and significantly reduce body weight z-score, percent body fat, percent trunk fat, and serum level of interleukin 6 in children with overweight or obesity (Clinicaltrials.gov no: NCT02125955).

Keywords

Inulin-type Fructans
Pediatric Obesity
BMI
Adiposity

Abbreviations used in this paper

ANOSIM
analysis of similarities
BA
bile acid
BMI
body mass index
CDCA
chenodeoxycholic acid
FBA
fecal bile acid
FDR
false discovery rate
HOMA2-IR
homeostatic model assessment for insulin resistance 2
IL
interleukin
LPS
lipopolysaccharide
OI
oligofructose-enriched inulin
OTU
operational taxonomic unit
PCR
polymerase chain reaction
T2D
type 2 diabetes

Cited by (0)

Conflict of interest R.A.R. previously held funding from Beneo, manufacturer of oligofructose-enriched inulin, for a project not related to the current work. The other authors disclose no conflicts.

Funding This work was supported by grants from the BMO Financial Group Endowed Research Fund in Healthy Living, Alberta Children’s Hospital Foundation, Alberta Children’s Hospital Research Institute and the Canadian Institutes of Health Research (MOP115076-1). These agencies had no role in study design, data collection, analysis, and interpretation, or manuscript preparation. A.C.N. and M.P.H. received scholarship funding from the Alberta Children’s Hospital Research Institute. A.C.N. received scholarship funding from the Canadian Institutes of Health Research. S.M. is funded through an Eyes High Postdoctoral Fellowship and an Alberta-Innovates Health Solutions Postdoctoral Fellowship.

Authors names in bold designate shared co-first authorship.