Skip to main content
  • Original Article
  • Published:

Variation in spring and autumn freezing resistance among and within Spanish wild populations of Castanea sativa

Variation de la résistance au gel au printemps et en automne entre et dans les populations espagnoles sauvages de Castanea sativa

Abstract

  • • Genetic variation in freezing resistance was evaluated among and within six populations of Spanish wild chestnut (Castanea sativa Miller). The extent to which frost susceptibility was related to phenology and the relationship between population differentiation and climatic conditions was studied.

  • • Twigs were collected in March and November from saplings (5-year-old trees) of 41 open-pollinated families from the six populations in a provenance-progeny test, and were subjected to artificial freezing. Damage to each twig was assessed as visible browning of bud and of stem tissues.

  • • Population differences as regards frost damage traits were highly significant (p < 0.01) in both spring and autumn. Family differences within populations were low, often non-significant, and in all cases smaller than differences among populations. Population means were closely correlated with the parental drought and frost conditions. Populations originating from dry areas or from regions where frost seldom occurs were the least resistant.

  • • Drought is suggested to be the one of the most important selective agents that shapes population differentiation in Spanish wild chestnut, while frost may be more important in northern Spain. Phenological differences are not always good predictors of the degree of frost damage. Thus, freezing tests should be used to detect frost susceptibility in chestnuts.

Résumé

  • • La variation génétique de la résistance au gel a été évaluée entre et dans six populations espagnoles sauvages de châtaignier (Castanea sativa Miller). L’ampleur avec laquelle la sensibilité au gel est liée à la phénologie et aux relations entre la différenciation de la population et les conditions climatiques a été étudiée.

  • • Des rameaux ont été recueillis en mars et novembre à partir de jeunes arbres (âgés de 5 ans) de 41 familles à pollinisation libre issues de six populations en test de descendances/provenances, et ont été soumis à une congélation artificielle. Les dommages à chaque rameau ont été évalués par le brunissement visible des bourgeons et des tissus de la tige.

  • • Les différences entre population pour ce qui concerne les dégâts causés par le gel sont très significatifs (p < 0.01) au printemps et en automne. Les différences entre familles dans les populations sont faibles, souvent non significatives, et dans tous les cas plus petites que les différences parmi les populations. Les moyennes des populations sont étroitement corrélées avec les conditions de sécheresse et de gel auxquelles sont soumis les parents.Les populations originaires des régions sèches ou de régions où le gel se produit rarement sont les moins résistantes.

  • • On suggère que la sécheresse est l’un des plus importants agents sélectifs qui forme la différenciation dans la population espagnole de châtaigniers sauvages, tandis que le gel peut être plus important dans le nord de l’Espagne. Les différences phénologiques ne sont pas toujours de bons indices du degré de dommages par le gel. Ainsi, les essais de gel doivent être utilisés pour détecter la sensibilité au gel des châtaigniers.

References

  • Aira-Rodríguez M.J. and Ramil-Rego P., 1995. Paleobotanical data from Northern Portugal (Baixo Minho) from pollen analysis and fossil seeds. Lagascalia 18: 25–38.

    Google Scholar 

  • Aitken S.N. and Adams W.T., 1996. Genetics of fall and winter cold hardiness of coastal Douglas-fir in Oregon. Can. J. For. Res. 26: 1828–1837.

    Article  Google Scholar 

  • Aldrete A., Mexal J.G., and Burr K.E., 2008. Seedling cold hardiness, bud set, and bud break in nine provenances of Pinus greggii Engelm. For. Ecol. Manage. 255: 3672–3676.

    Article  Google Scholar 

  • Alexander N.L., Flint H.L., and Hammer P.A., 1984. Variation in cold hardiness of Fraxinus americana stem tissue according to geographic origin. Ecology 65: 1087–1092.

    Article  Google Scholar 

  • Allué J.L., 1990. Atlas fitoclimático de España. Taxonomías, INIA. Ministerio de Agricultura, Pesca y Alimentación, Madrid, 221 p.

    Google Scholar 

  • Baliuckas V., Ekberg I., Eriksson G., and Norell L., 1999. Genetic variation among and within populations of four Swedish hardwood species assessed in a nursery trial. Silvae Genet. 48: 17–24.

    Google Scholar 

  • Calkins J.B. and Swanson B.T., 1990. The distinction between living and dead plant-tissue viability tests in cold hardiness research. Cryobiology 27: 194–211.

    Article  Google Scholar 

  • Cannell M.G.R., Murray M.B., and Sheppard L.J., 1987. Frost hardiness of red alder (Alnus rubra) provenances in Britain. Forestry 60: 57–67.

    Article  Google Scholar 

  • Deans J.D. and Harvey F.J., 1995. Phenologies of sixteen European provenances of sessile oak growing in Scotland. Forestry 68: 265–273.

    Article  Google Scholar 

  • Deans J.D. and Harvey F.J., 1996. Frost hardiness of 16 European provenances of sessile oak growing in Scotland. Forestry 69: 5–11.

    Article  Google Scholar 

  • Díaz R., Bauone N., Ninot A., Fernández-López J., and Aletà N., 2006. Performance differences and genetic parameters for four local Spanish populations. Acta Hort. 705: 103–108.

    Google Scholar 

  • Eiga S. and Sakai A., 1984. Altitudinal variation in freezing resistance of saghalien fir (Abies sachalinensis). Can. J. Bot. 62: 156–160.

    Article  Google Scholar 

  • Eriksson G. and Ekberg I., 2001. An Introduction to Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, 166 p.

    Google Scholar 

  • Fernández-López J., Zas R., Blanco-Silva R., and Díaz R., 2005a. Geographic differentiation in adaptative traits of wild chestnut Spanish populations (Castanea sativa Miller). Investigación Agraria: Sistemas y Recursos Forestales 14: 13–26.

    Google Scholar 

  • Fernández-López J., Zas R., Díaz R., Villani F., Cherubini M., Aravanopoulos F.A., Alizoti P., Eriksson G., Botta R., and Mellano M.G., 2005b. Geographic variability among extreme European wild chestnut populations. Acta Hort. 693: 181–186.

    Google Scholar 

  • Fernandez M., Marcos C., Tapias R., Ruiz F., and Lopez G., 2007. Nursery fertilisation affects the frost-tolerance and plant quality of Eucalyptus globulus Labill. cuttings. Ann. For. Sci. 64: 865–873.

    Article  Google Scholar 

  • Ferrazzini D., Monteleone I., and Belletti P., 2007. Genetic variability and divergence among Italian populations of common ash (Fraxinus excelsior L.). Ann. For. Sci. 64: 159–168.

    Article  Google Scholar 

  • Fineschi S., Taurchini D., Villani F., and Vendramin G.G., 2000. Chloroplast DNA polymorphism reveals little geographical structure in Castanea sativa Mill. (Fagaceae) throughout southern European countries. Mol. Ecol. 9: 1495–1503.

    Article  PubMed  CAS  Google Scholar 

  • Flint H.L., 1972. Cold hardiness of twigs of Quercus rubra L. as a function of geographic origin. Ecology 53: 1163–1170.

    Article  Google Scholar 

  • García-Antón M., Morla-Juaristi C., and Sainz-Ollero H., 1990. Consideraciones sobre la presencia de algunos vegetales relictos terciarios durante el cuaternario en la Península Ibérica. Bol. R. Soc. Esp. Hist. Nat. (Sec. Biol.) 86: 95–105.

    Google Scholar 

  • Hanninen H., Hakkinen R., Hari P., and Koski V., 1990. Timing of growth cessation in relation to climatic adaptation of northern woody plants. Tree Physiol. 6: 29–39.

    PubMed  Google Scholar 

  • Howe G.T., Aitken S.N., Neale D.B., Jermstad K.D., Wheeler N.C., and Chen T.H.H., 2003. From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can. J. Bot. 81: 1247–1266.

    Article  CAS  Google Scholar 

  • Jensen J.S. and Deans J.D., 2004. Late autumn frost resistance of twelve north European provenances of Quercus species. Scand. J. For. Res. 19: 390–399.

    Article  Google Scholar 

  • Jermstad K.D., Bassoni D.L., Jech K.S., Wheeler N.C., and Neale D.B., 2001. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. I. Timing of vegetative bud flush. Theor. Appl. Genet. 102: 1142–1151.

    Article  CAS  Google Scholar 

  • Johnsen Ø., 1989. Freeze-testing young Picea abies plants. Scand. J. For. Res. 4: 351–367.

    Article  Google Scholar 

  • Johnsen Ø., Fossdal C.G., Nagy N., Molmann J., Daehlen O.G., and Skrøppa T., 2005. Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant Cell Environ. 28: 1090–1102.

    Article  CAS  Google Scholar 

  • Johnsen Ø. and Skrøppa T., 2000. Provenances and families show different patterns of relationship between bud set and frost hardiness in Picea abies. Can. J. For. Res. 30: 1858–1866.

    Article  Google Scholar 

  • Joly R.J., Adams W.T., and Stafford S.G., 1989. Phenological and morphological responses of mesic and dry site sources of coastal Douglas-fir to water deficit. For. Sci. 35: 987–1005.

    Google Scholar 

  • Krebs P., Conedera M., Pradella M., Torriani D., Felber M., and Tinner W., 2004. Quaternary refugia of the sweet chestnut (Castanea sativa Mill.): an expended palynological approach. Veget. Hist. Archeobot. 13: 145–160.

    Google Scholar 

  • Lauteri M., Pliura A., Monteverdi M.C., Brugnoli E., Villani F., and Eriksson G., 2004. Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities. J. Evol. Biol. 17: 1286–1296.

    Article  PubMed  CAS  Google Scholar 

  • Liepe K., 1993. Growth-chamber trial on frost hardiness and field trial on flushing of sessile oak (Quercus petraea Liebl). Ann. Sci. For. 50 (Suppl.): 208s-214s.

    Article  Google Scholar 

  • Linkosalo T., Hakkinen R., and Hanninen H., 2006. Models of the spring phenology of boreal and temperate trees: is there something missing? Tree Physiol. 26: 1165–1172.

    PubMed  Google Scholar 

  • Lynch M. and Walsh B., 1998. Genetics and analysis of quantitative traits, Sinauer Associates Inc., Sunderland, 979 p.

    Google Scholar 

  • Manino A., Patetta A., and Marletto F., 1991. Investigations on chestnut pollination. Acta Hortic. 288: 335–339.

    Google Scholar 

  • McCamant T. and Black R.A., 2000. Cold hardiness in coastal, montane, and inland populations of Populus trichocarpa. Can. J. For. Res. 30: 91–99.

    Google Scholar 

  • Miranda-Fontaíña M.E. and Fernández-López J., 2006. Genetic variation in susceptibility to Phytophthora cinnamomi in Spanish natural chestnut populations. In: Population genetics and genomics of forest trees: from gene function to evolutionary dynamics and Conservation, IUFRO, Alcalá de Henares, Madrid (Spain), 214 p.

    Google Scholar 

  • Morgenstern E.K., 1996. Geographic variation in forest trees: Genetic basis and application of knowledge in silviculture, UBC Press, Vancouver, 209 p.

    Google Scholar 

  • Oliveira D., Gomes A., Ilharco F.A., Manteigas A.M., Pinto J., and Ramalho J., 2001. Importance of insect pollinators for the production in the chestnut, Castanea sativa. Acta Hort. 561: 269–273.

    Google Scholar 

  • Pliura A. and Eriksson G., 2002. Genetic variation in juvenile height and biomass of open-pollinated families of six Castanea sativa Mill. populations in a 2×2 factorial temperature x watering experiment. Silvae Genet. 51: 152–160.

    Google Scholar 

  • Sakai A. and Larcher W., 1987. Frost survival of plants. Responses and adaptations to freezing stress, Springer-Verlag, New York, 252 p.

    Google Scholar 

  • SAS, 1999. Getting started with the SAS System, Version 8, SAS Institute Inc., Cary, NC, 90 p.

    Google Scholar 

  • Saxe H., Cannell M.G.R., Johnsen B., Ryan M.G., and Vourlitis G., 2001. Tree and forest functioning in response to global warming. New Phytol. 149: 369–399.

    Article  CAS  Google Scholar 

  • Skrøppa T., 1984. A critical evaluation of methods avaliable to estimate the genotype x environment interaction. Studia Forestalia Suecica 166: 3–14.

    Google Scholar 

  • Smithberg M.H. and Weiser C.J., 1968. Patterns of variation among climatic races of red-osier dogwood. Ecology 49: 495–505.

    Article  Google Scholar 

  • Squillace A.E., 1974. Average genetic correlations among offspring from open-pollinated forest trees. Silvae Genet. 23: 149–156.

    Google Scholar 

  • Stern K. and Roche L., 1974. Genetics of forest ecosystems, Springer Verlag, 330 p.

  • Thomas B.R. and Lester D.T., 1992. An examination of regional, provenance, and family variation in cold hardiness of Pinus monticola. Can. J. For. Res. 22: 1917–1921.

    Article  Google Scholar 

  • Tsarouhas V., Kenney W.A., and Zsuffa L., 2000. Application of two electrical methods for the rapid assessment of freezing resistance in Salix eriocephala. Biomass Bioenergy 19: 165–175.

    Article  Google Scholar 

  • Weiser C.J., 1970. Cold resistance and injury in woody plants. Science 169: 1269–1278.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox M.D., Faulds T., Vincent T.G., and Poole B.R., 1980. Genetic variation in frost tolerance among open-pollinated families of Eucalyptus regnans Muell F. Aust. For. Res. 10: 169–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, R., Johnsen, Ø. & Fernández-López, J. Variation in spring and autumn freezing resistance among and within Spanish wild populations of Castanea sativa . Ann. For. Sci. 66, 708 (2009). https://doi.org/10.1051/forest/2009059

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009059

Keywords

Mots-clés