Skip to main content
Log in

Alkane composition variations between darker and lighter colored comb beeswax

Variations de la composition en alkanes entre la cire d’abeilles de rayons de coloration foncée et celle de coloration plus claire

Unterschiede in der Zusammensetzung von Kohlenwasserstoffen auf Waben mit dunklem und hellem Bienenwachs

  • Original Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Beeswax is composed of fatty acids, odd numbered n-alkanes and wax esters. Focusing on the most stable components of beeswax, namely the n-alkanes, we have found by gas chromatography and gas chromatography-mass spectrometry analyses of combs from twelve colonies from Israel and Jordan that as beeswax ages and darkens its n-alkane composition changes. The amount of even numbered n-alkanes (C22– C32) is significantly higher in darker colored beeswax as compared to light colored beeswax. We attribute this in part to the accumulation of cuticular residues found in the darker colored comb cells. Cuticular residues are known to contain C23–C32 odd and even numbered n-alkanes.

Zusammenfassung

Die Hauptbestandteile von Bienenwachs sind fettlösliche Substanzen wie Fettsäuren, langkettige Alkohole, geradzahlige n-Alkane und Wachsester (Tulloch, 1970; Aichholz and Lorbeer, 2000). Wir untersuchten die Zusammensetzung der n-Alkane in unterschiedlich gefärbtem Bienenwachs. Die Farbveränderungen der Wabe sind von der Brutaktivität abhängig und die dunkle Farbe soll durch eine Anhäufung von Resten der Nymphenhäutchen verursacht werden (Jay, 1963, Hepburn and Kurstjens, 1988; Hepburn et al., 1991; Berry and Delaplane, 2001). Gaschromatographie (GC) und GC—Massenspektrometrie wurden für die Analysen eingesetzt (Evershed et al., 1997; Regert et al., 2001). Wie bestätigten, dass helles Bienenwachs vor allem ungeradzahlige Alkane enthält. Überraschenderweise stellten wir fest, dass das dunkle Bienenwachs zusätzlich zu den ungeraden Alkanen durchschnittlich drei Mal mehr geradzahlige Alkane enthält (Abb. 3 und 4). Die Quelle für die geradzahligen Alkane im dunkleren Bienenwachs sind sehr wahrscheinlich die Wachse auf der Bienenkutikula, die sich im Bereich des Brutnestes anreichern. Es ist bekannt, dass diese Kutikulawachse sowohl geradzahlige als auch ungeradzahlige Alkane enthalten (Salvy et al., 2001). Dieser neue Befund zeigt, dass unterschiedliche Aktivitäten der Bienen innerhalb des Bienenvolkes Auswirkungen auf die Zusammensetzung des Bienenwachses haben (Hepburn and Kurstjens, 1988; Berry and Delaplane, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aichholz R., Lorbeer E. (2000) Investigation of combwax of honeybees with high-temperature gas chromatography and high-temperature gas chromatography chemical ionization mass spectrometry. II:High temperature gas chromatography chemical ionization mass spectrometry, J. Chromatogr. A 883, 75–88.

    Article  PubMed  CAS  Google Scholar 

  • Asperger A., Engewald W., Fabian G. (1999) Analytical characterization of natural waxes employing pyrolysis-Gas Chromatography-Mass Spectrometry, J. Anal. Appl. Pyrolysis 50, 103–115.

    Article  CAS  Google Scholar 

  • Berry J.A., Delaplane K.S. (2001) Effects of comb age on honey bee colony growth and brood survivorship, J. Apic. Res. 40, 3–8.

    Google Scholar 

  • Blomquist G.J., Jackson L.L. (1973) Incorporation of labelled dietary n-alkanes into cuticular lipids of the grasshopper, malenoplus sanguinipes, J. Insect Physiol. 19, 1639–1647.

    Article  CAS  Google Scholar 

  • DeGrandi-Hoffman G., Roth S.A., Loper G.L., Erickson Jr. E.H. (1989) BEEPOP: A honeybee population dynamics simulation mode, Ecol. Model. 45, 133–150.

    Article  Google Scholar 

  • Evershed R.P., Vaughan S.J., Dudd S.N., Soles J.S. (1997) Fuel for thought? Beeswax in lamps and conical cups from Late Minoan Crete, Antiquity 71, 980–985.

    Google Scholar 

  • Haddad N.J., Fuchs S. (2004) Honeybee agrobiodiversity: a project in conservation of Apis mellifera syriaca in Jordan, Uludag Bee J. 3, 116–120.

    Google Scholar 

  • Hepburn H.R., Kurstjens S.P. (1988) The combs of honey bees as composite materials, Apidologie 19, 25–36.

    Article  Google Scholar 

  • Hepburn H.R., Bernard R.T.F., Davidson B.C., Muller W.J., Lloyd P., Kurstjens S.P., Vincent S.L. (1991) Synthesis and secretion of beeswax in honeybees, Apidologie 22, 21–36.

    Article  CAS  Google Scholar 

  • Heron C., Nemcek N., Bonfield K.M., Dixon D., Ottaway B.S. (1994) The chemistry of Neolithic beeswax, Naturwissenschaften 81, 266–269.

    Article  CAS  Google Scholar 

  • Jay C.S. (1963) The development of honeybees in their cells, J. Apic. Res. 2, 117–134.

    Google Scholar 

  • Jimenez J.J., Bernal J.L., Aumente S., Toribio L., Bernal J. (2003) Quality assurance of commercial beeswax. Part II. Gas chromatography electrom impact ionization mass spectrometry of alcohols and acids, J. Chromatogr. A 1007, 101–116.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez J.J., Bernal J.L., Aumente S., del Nozal M.J., Martin M.T., Bernal J. (2004) Quality assurance of commercial beeswax. Part I. Gas chromatography electrom impact ionization mass spectrometry of hydrocarbons and monoesters, J. Chromatogr. A 1024, 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Lockey K.H. (1988) Lipids of the insect cuticle: Origin, composition and function, Comp. Biochem. Physiol. 89 B, 595–645.

    Google Scholar 

  • MacLellan A.R. (1978) Growth and decline of honeybee colonies and interrelationships of adult bees, brood, honey and pollen, J. Appl. Ecol. 15, 155–157.

    Article  Google Scholar 

  • Mills J.S., White R. (1994) The Organic Chemistry of Museum Objects, Butterworth-Heinemann, London.

    Google Scholar 

  • Regert M., Colinart S., Degrand L., Decavallas O. (2001) Chemical alteration and use of beeswax through time: Accelerated ageing tests and analysis of archaeological samples from various environmental contexts, Archaeometry 43, 549–569.

    Article  CAS  Google Scholar 

  • Salvy M., Martin C., Bagneres A.G., Provost E., Roux M., Le Conte Y., Clement J.L. (2001) Modifications of the cuticular hydrocarbon profile of Apis Mellifera worker bee in the presence of the ectoparasitic mite Varroa jacobsoni in brood cells, Parasitology 122, 145–159.

    Article  PubMed  CAS  Google Scholar 

  • Tulloch A.P. (1970) The composition of beeswax and other waxes secreted by insects, Lipids 5, 247–258.

    Article  CAS  Google Scholar 

  • Tulloch A.P. (1971) Beeswax: structure of the esters and their component hydroxy acids and diols, Chem. Phys. Lipids 6, 235–265.

    Article  CAS  Google Scholar 

  • Tulloch A.P. (1980) Beeswax — Composition and Analysis, Bee World 61, 47–62.

    CAS  Google Scholar 

  • Tulloch A.P., Hoffman L.L. (1972) Canadian beeswax: analytical values and composition of hydrocarbons, free acids and long chain esters, J. Am. Oil Chem. Soc. 49, 696–699.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dvory Namdar.

Additional information

Manuscript editor: Jean-Noël Tasei

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namdar, D., Neumann, R., Sladezki, Y. et al. Alkane composition variations between darker and lighter colored comb beeswax. Apidologie 38, 453–461 (2007). https://doi.org/10.1051/apido:2007033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido:2007033

Navigation