Skip to main content

Advertisement

Log in

Modelling soil carbon and nitrogen cycles during land use change. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Forested soils are being increasingly transformed to agricultural fields in response to growing demands for food crop. This modification of the land use is known to result in deterioration of soil properties, in particular its fertility. To reduce the impact of the human activities and mitigate their effects on the soil, it is important to understand the factors responsible for the modification of soil properties. In this paper we reviewed the principal processes affecting soil quality during land use changes, focusing in particular on the effect of soil moisture dynamics on soil carbon (C) and nitrogen (N) cycles. Both physical and biological processes, including degradation of litter and humus, and soil moisture evolution at the diurnal and seasonal time scales were considered, highlighting the impact of hydroclimatic variability on nutrient turnover along with the consequences of land use changes from forest to agricultural soil and vice-versa. In order to identify to what extent different models are suitable for long-term predictions of soil turnover, and to understand whether some simulators are more suited to specific environmental conditions or ecosystems, we enumerated the principal features of the most popular existing models dealing with C and N turnover. Among these models, we considered in detail a mechanistic compartment-based model. To show the capabilities of the model and to demonstrate how it can be used as a predictive tool to forecast the effects of land use changes on C and N dynamics, four different scenarios were studied, intertwining two different climate conditions (with and without seasonality) with two contrasting soils having physical properties that are representative of forest and agricultural soils. The model incorporates synthetic time series of stochastic precipitation, and therefore soil moisture evolution through time. Our main findings in simulating these scenarios are that (1) forest soils have higher concentrations of C and N than agricultural soils as a result of higher litter decomposition; (2) high frequency changes in water saturations under seasonal climate scenarios are commensurate with C and N concentrations in agricultural soils; and (3) due to their different physical properties, forest soils attenuate the seasonal climate-induced frequency changes in water saturation, with accompanying changes in C and N concentrations. The model was shown to be capable of simulating the long term effects of modified physical properties of agricultural soils, being thus a promising tool to predict future consequences of practices affecting sustainable agriculture, such as tillage (leading to erosion), ploughing, harvesting, irrigation and fertilization, leading to C and N turnover changes and in consequence, in terms of agriculture production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agboola A.A. (1981) The effects of different soil tillage and management practices on the physical and chemical properties of soil and maize yields in a rainforest zone of Western Nigeria, Agron. J. 73, 247–251.

    Article  Google Scholar 

  • Agren G.I., McMurtrie R.E., Parton W.J., Pastor J., Shugart H.H. (1991) State-of-the-art of models of production-decomposition linkages in conifer and grassland ecosystems, Ecol. Appl. 1, 118–138.

    Article  Google Scholar 

  • Arnold J.G., Allen P.M., Bernhardt G. (1993) A comprehensive surfacegroundwater flow model, J. Hydrol. 142, 47–69.

    Article  Google Scholar 

  • Austin A.T., Yahdjian L., Stark J.M., Belnap J., Porporato A., Norton U., Ravetta D.A., Schaeffer S.M. (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems, Oecologia 141, 221–235.

    Article  PubMed  Google Scholar 

  • Barbour M.G., Burk J.H., Pitts W.D., Gilliam F.S., Schwartz M.W. (1999) Terrestrial plant ecology. Pearson Benjamin Cummings, Menlo Park, Canada.

    Google Scholar 

  • Barry D.A., Prommer H., Miller C.T., Engesgaard P., Brun A., Zheng C. (2002) Modelling the fate of oxidisable organic contaminants in groundwater, Adv. Water Resour. 25, 945–983.

    Article  CAS  Google Scholar 

  • Bell C., McIntyre N., Cox S., Tissue D., Zak J. (2008) Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan desert grassland, Microb. Ecol. 56, 153–167.

    Article  PubMed  Google Scholar 

  • Berger T.W., Neubauer C., Glatzel G. (2002) Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria, For. Ecol. Manage. 159, 3–14.

    Article  Google Scholar 

  • Bolker B.J., Pacala S.W., Parton W.J. (1998) Linear analysis of soil decomposition: insights from the century model, Ecol. Appl. 8, 425–439.

    Article  Google Scholar 

  • Bonde T.A., Christensen B.T., Cerri C.C. (1992) Dynamics of soil organic matter as reflected by natural 13C abundance in particle size fractions of forested and cultivated oxisols, Soil Biol. Biochem. 24, 275–277.

    Article  CAS  Google Scholar 

  • Borken W., Xu Y.-J., Davidson E.A., Beese F. (2002) Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests, Glob. Change Biol. 8, 1205–1216.

    Article  Google Scholar 

  • Borken W., Xu Y.J., Brumme R., Lamersdorf N. (1999) A Climate Change Scenario for Carbon Dioxide and Dissolved Organic Carbon Fluxes from a Temperate Forest Soil: Drought and Rewetting Effects, Soil Sci. Soc. Am. J. 63, 1848–1855.

    Article  CAS  Google Scholar 

  • Bosatta E., Agren G.I. (1991) Theoretical analysis of carbon and nutrient interactions in soils under energy-limited conditions, Soil Sci. Soc. Am. J. 55, 728–733.

    Article  CAS  Google Scholar 

  • Bosatta E., Ågren G.I. (1994) Theoretical analysis of microbial biomass dynamics in soils, Soil Biol. Biochem. 26, 143–148.

    Article  CAS  Google Scholar 

  • Bossel H. (1996) TREEDYN3 forest simulation model, Ecol. Model. 90, 187–227.

    Article  Google Scholar 

  • Bradbury N.J., Whitmore A.P., Hart P.B.S., Jenkinson D.S. (1993) Modelling the fate of nitrogen in crop and soil in the years following application of 15N-labelled fertilizer to winter wheat, J. Agric. Sci. 121, 363–379.

    Article  CAS  Google Scholar 

  • Brady N.C., Weil R.R. (2004) Elements of the nature and properties of soils. Pearson Prentice Hall, Upper Saddle River, New Jersey, USA.

    Google Scholar 

  • Brams E. (1971) Continuous cultivation of West African soils: Organic matter diminution and effects of applied lime and phosphorus, Plant Soil 35, 401–414.

    Article  CAS  Google Scholar 

  • Brown S., Lugo A. (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and US Virgin Islands, Plant Soil 124, 53–64.

    Article  CAS  Google Scholar 

  • Bruce J.P., Frome M., Haites E., Janzen H., Lal R., Paustian K. (1999) Carbon sequestration in soils, J. Soil Water Conserv. 54, 382–389.

    Google Scholar 

  • Brussaard L. (1998) Soil fauna, guilds, functional groups and ecosystem processes, Appl. Soil Ecol. 9, 123–135.

    Article  Google Scholar 

  • Buchmann N. (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands, Soil Biol. Biochem. 32, 1625–1635.

    Article  CAS  Google Scholar 

  • Carmean W.H. (1957) The structure of forest soils, Ohio J. Sci. 57, 165–168.

    Google Scholar 

  • Cherif M., Loreau M. (2009) When microbes and consumers determine the limiting nutrient of autotrophs: a theoretical analysis, Proc. R. Soc. B 276, 487–497.

    Article  PubMed  Google Scholar 

  • Chertov O.G., Komarov A.S. (1997) SOMM: a model of soil organic matter dynamics, Ecol. Model. 94, 177–189.

    Article  CAS  Google Scholar 

  • Christensen B.T. (1996) Matching measurable soil organic matter fractions with conceptual pools in simulation models of carbon turnover: revision of model structure, in: Powlson D.S., Smith P., Smith J.U. (Eds.), Evaluation of soil organic matter models, Springer Verlag, Berlin, pp. 143–160.

    Chapter  Google Scholar 

  • Christiansen J.R., Elberling B., Jansson P.E. (2006) Modelling water balance and nitrate leaching in temperate Norway spruce and beech forests located on the same soil type with the CoupModel, For. Ecol. Manage. 237, 545–556.

    Article  Google Scholar 

  • Conant R.T., Klopatek J.M., Klopatek C.C. (2000) Environmental factors controlling soil respiration in three semiarid ecosystems, Soil Sci. Soc. Am. J. 64, 383–390.

    Article  CAS  Google Scholar 

  • Coquet Y., Simunek J., Coutadeur C., van Genuchten M.T., Pot V., Roger-Estrade J. (2005) Water and solute transport in a cultivated silt loam soil. 2. Numerical analysis, Vadose Zone J. 4, 587–601.

    Article  Google Scholar 

  • Csonka L.N. (1989) Physiological and genetic responses of bacteria to osmotic stress, Microbiol. Rev. 53, 121–147.

    PubMed  CAS  Google Scholar 

  • Cui M., Caldwell M.M. (1997) A large ephemeral release of nitrogen upon wetting of dry soil and corresponding root responses in the field, Plant Soil 191, 291–299.

    Article  CAS  Google Scholar 

  • Curiel Yuste J., Baldocchi D.D., Gershenson A., Goldstein A., Misson L., Wong S. (2007) Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture, Glob. Change Biol. 13, 2018–2035.

    Article  Google Scholar 

  • D’Odorico P., Laio F., Porporato A., Rodriguez-Iturbe I. (2003) Hydrologic controls on soil carbon and nitrogen cycles. II. A case study, Adv. Water Resour. 26, 59–70.

    Article  Google Scholar 

  • D’Odorico P., Porporato A., Laio F., Ridolfi L., Rodriguez-Iturbe I. (2004) Probabilistic modeling of nitrogen and carbon dynamics in water-limited ecosystems, Ecol. Model. 179, 205–219.

    Article  CAS  Google Scholar 

  • Dalal R.C., Mayeer R.J. (1986) Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. I. Overall changes in soil properties and trends in winter cereal yield, Aust. J. Soil Res. 24, 265–279.

    Article  CAS  Google Scholar 

  • Davidson E.A., Ackerman I.L. (1993) Changes in soil carbon inventories following cultivation of previously untilled soils, Biogeochemistry 20, 161–193.

    Article  CAS  Google Scholar 

  • Davidson E.A., Belk E., Boone R.D. (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest, Glob. Change Biol. 4, 217–227.

    Article  Google Scholar 

  • Davidson E.A., Verchot L.V., Cattanio J.H., Ackerman I.L., Carvalho J.E.M. (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia, Biogeochemistry 48, 53–69.

    Article  CAS  Google Scholar 

  • de Moraes J.F.L., Volkoff B., Cerri C.C., Bernoux M. (1996) Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil, Geoderma 70, 63–81.

    Article  Google Scholar 

  • de Willigen P. (1991) Nitrogen turnover in the soil-crop system; comparison of fourteen simulation models, Nutr. Cycl. Agroecosyst. 27, 141–149.

    Google Scholar 

  • Desjardins T., Andreux F., Volkoff B., Cerri C.C. (1994) Organic carbon and 13C contents in soils and soil size-fractions, and their changes due to deforestation and pasture installation in eastern Amazonia, Geoderma 61, 103–118.

    Article  Google Scholar 

  • Easter M., Paustian K., Killian K., Williams S., Feng T., Al-Adamat R., Batjes N.H., Bernoux M., Bhattacharyya T., Cerri C.C., Cerri C.E.P., Coleman K., Falloon P., Feller C., Gicheru P., Kamoni P., Milne E., Pal D.K., Powlson D.S., Rawajfih Z., Sessay M., Wokabi S. (2007) The GEFSOC soil carbon modelling system: A tool for conducting regional-scale soil carbon inventories and assessing the impacts of land use change on soil carbon, Agric. Ecosyst. Environ. 122, 13–25.

    Article  CAS  Google Scholar 

  • Eckersten H., Beier C. (1998) Comparison of N and C dynamics in two Norway spruce stands using a process oriented simulation model, Environ. Pollut. 102, 395–401.

    Article  CAS  Google Scholar 

  • Eckersten H., Blombäck K., Kätterer T., Nyman P. (2001) Modelling C, N, water and heat dynamics in winter wheat under climate change in southern Sweden, Agric. Ecosyst. Environ. 86, 221–235

    Article  CAS  Google Scholar 

  • Ellert B.H., Gregorich E.G. (1996) Storage of carbon, nitrogen and phosphorus in cultivated and adjacent forested soils of Ontario, Soil Sci. 161, 587–603.

    Article  CAS  Google Scholar 

  • Elliott E.T., Paustian K., Frey S.D. (1996) Modeling the measurable or measuring the modelable: a hierarchical approach to isolating meaningful soil organic matter fractions, in: Powlson D.S., Smith P., Smith J.U. (Eds.), Evaluation of soil organic matter models. Using existing long-term datasets, Springer, Heidelberg, p. 429.

    Google Scholar 

  • Epron D., Nouvellon Y., Roupsard O., Mouvondy W., Mabiala A., Saint-André L., Joffre R., Jourdan C., Bonnefond J.-M., Berbigier P., Hamel O. (2004) Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo, For. Ecol. Manage. 202, 149–160.

    Article  Google Scholar 

  • Feigl B., Melillo J., Cerri C. (1995) Changes in the origin and quality of soil organic matter after pasture introduction in Rondônia (Brazil), Plant Soil 175, 21–29.

    Article  CAS  Google Scholar 

  • Feller C., Beare M.H. (1997) Physical control of soil organic matter dynamics in the tropics, Geoderma 79, 69–116.

    Article  CAS  Google Scholar 

  • Fenchel T., King G.M., Blackburn T.H. (1998) Bacterial biogeochemistry. The ecophysiology of mineral cycling, Academic Press, San Diego, California, USA.

    Google Scholar 

  • Fernandes E.C.M., Motavalli P.P., Castilla C., Mukurumbira L. (1997) Management control of soil organic matter dynamics in tropical land-use systems, Geoderma 79, 49–67.

    Article  CAS  Google Scholar 

  • Findeling A., Garnier P., Coppens F., Lafolie F., Recous S. (2007) Modelling water, carbon and nitrogen dynamics in soil covered with decomposing mulch, Eur. J. Soil Sci. 58, 196–206.

    Article  CAS  Google Scholar 

  • Franko U. (1996) Modelling approaches of soil organic matter within the CANDY system, in: Powlson D.S., Smith P., Smith J.U. (Eds.), Evaluation of soil organic matter models using existing, long-term datasets, NATO ASI, I38, Springer, Berlin, pp. 247–254.

    Chapter  Google Scholar 

  • Franko U., Crocker G.J., Grace P.R., Klír J., Körschens M., Poulton P.R., Richter D.D. (1997) Simulating trends in soil organic carbon in long-term experiments using the CANDY model, Geoderma 81, 109–120.

    Article  Google Scholar 

  • Franko U., Oelschlägel B., Schenk S. (1995) Simulation of temperature, water- and nitrogen dynamics using the model CANDY, Ecol. Model. 81, 213–222.

    Article  CAS  Google Scholar 

  • Frolking S., Roulet N.T., Moore T.R., Richard P.J.H., Lavoie M., Muller S.D. (2001) Modeling northern peatland decomposition and peat accumulation, Ecosyst. 4, 479–498.

    Article  Google Scholar 

  • Furniss P.R., Ferrar P., Morris J.W., Bezuidenhout J.J. (1982) A model of savannah litter decomposition, Ecol. Model. 17, 33–51.

    Article  Google Scholar 

  • García-Oliva F., Casar I., Morales P., Maass J.M. (1994) Forest-to-pasture conversion influences on soil organic carbon dynamics in a tropical deciduous forest, Oecologia 99, 392–396.

    Article  Google Scholar 

  • García-Oliva F., Sanford R.L., Kelly E. (1999) Effects of slash-and-burn management on soil aggregate organic C and N in a tropical deciduous forest, Geoderma 88, 1–12.

    Article  Google Scholar 

  • Garnier P., Néel C., Aita C., Recous S., Lafolie F., Mary B. (2003) Modelling carbon and nitrogen dynamics in a bare soil with and without straw incorporation, Eur. J. Soil Sci. 54, 555–568.

    Article  CAS  Google Scholar 

  • Garnier P., Néel C., Mary B., Lafolie F. (2001) Evaluation of a nitrogen transport and transformation model in a bare soil, Eur. J. Soil Sci. 52, 253–268.

    Article  CAS  Google Scholar 

  • Gignoux J., House J., Hall D., Masse D., Nacro H.B., Abbadie L. (2001) Design and test of a generic cohort model of soil organic matter decomposition: the SOMKO model, Glob. Ecol. Biogeogr. 10, 639–660.

    Article  Google Scholar 

  • Goulden M.L., Miller S.D., da Rocha H.R., Menton M.C., de Freitas H.C., e Silva Figueira A.M., de Sousa C.A.D. (2004) Diel and seasonal patterns of tropical forest CO2 exchange, Ecol. Appl. 14, 42–54.

    Article  Google Scholar 

  • Groffman P.M., Boulware N.J., Zipperer W.C., Pouyat R.V., Band L.E., Colosimo M.F. (2002) Soil nitrogen cycle processes in urban riparian zones, Environ. Sci. Technol. 36, 4547–4552.

    Article  PubMed  CAS  Google Scholar 

  • Hadas A., Kautsky L., Goek M., Erman Kara E. (2004) Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover, Soil Biol. Biochem. 36, 255–266.

    Article  CAS  Google Scholar 

  • Hansen S., Jensen H.E., Nielsen N.E., Svendsen H. (1991) Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY, Fert. Res. 27, 245–259.

    Article  CAS  Google Scholar 

  • Hattermann F., Krysanova V., Wechsung F., Wattenbach M. (2004) Integrating groundwater dynamics in regional hydrological modelling, Environ. Model. Softw. 19, 1039–1051.

    Article  Google Scholar 

  • Henriksen T.M., Breland T.A. (1999) Evaluation of criteria for describing crop residue degradability in a model of carbon and nitrogen turnover in soil, Soil Biol. Biochem. 31, 1135–1149.

    Article  CAS  Google Scholar 

  • Houghton R.A. (2002) The global effects of tropical deforestation, Environ. Sci. Technol. 24, 414–422.

    Article  Google Scholar 

  • Houghton R.A., Lefkowitz D.S., Skole D.L. (1991) Changes in the landscape of Latin America between 1850 and 1985 I. Progressive loss of forests, For. Ecol. Manage. 38, 143–172.

    Article  Google Scholar 

  • Howard D.M., Howard P.J.A. (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types, Soil Biol. Biochem. 25, 1537–1546.

    Article  Google Scholar 

  • Hunt H.W., Trlica M.J., Redente E.F., Moore J.C., Detling J.K., Kittel T.G.F., Walter D.E., Fowler M.C., Klein D.A., Elliott E.T. (1991) Simulation model for the effects of climate change on temperate grassland ecosystems, Ecol. Model. 53, 205–246.

    Article  Google Scholar 

  • IPCC (2003) Good practice guidance for land use, land use change and forestry, in: Penman J., Gytarsky M., Hiraishi T., Krug T., Kruger T., Pipatti R., Buendia L., Miwa K., Ngara T., Tanabe K., Wagner F. (Eds.), Intergovernmental Pannel on Climate Change, Hayama, Kanagawa, Japan, p. 599.

  • Islam K.R., Kamaluddin M., Bhuiyan M.K., Badruddin A. (1999) Comparative performance of exotic and indigenous forest species for tropical semievergreen degraded forest land reforestation in Chittagong, Bangladesh, Land Degrad. Dev. 10, 241–249.

    Article  Google Scholar 

  • Islam K.R., Weil R.R. (2000) Land use effects on soil quality in a tropical forest ecosystem of Bangladesh, Agric. Ecosyst. Environ. 79, 9–16.

    Article  Google Scholar 

  • Ito A. (2007) Simulated impacts of climate and land-cover change on soil erosion and implication for the carbon cycle, 1901 to 2100, Geophys. Res. Lett. 34.

  • Jenkinson D.S. (1990) The turnover of organic carbon and nitrogen in soil, Philos. Trans. R. Soc. Lond. B 329, 361–368.

    Article  CAS  Google Scholar 

  • Jenkinson D.S., Adams D.E., Wild A. (1991) Model estimates of CO2 emissions from soil in response to global warming, Nature 351, 304–306.

    Article  CAS  Google Scholar 

  • Jenkinson D.S., Coleman K. (2008) The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover, Eur. J. Soil Sci. 59, 400–413.

    Article  Google Scholar 

  • Jenkinson D.S., Rayner J.H. (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments, Soil Sci. 123, 298–305.

    Article  CAS  Google Scholar 

  • Jensen L.S., Mueller T., Nielsen N.E., Hansen S., Crocker G.J., Grace P.R., Klír J., Körschens M., Poulton P.R. (1997) Simulating trends in soil organic carbon in long-term experiments using the soil-plantatmosphere model DAISY, Geoderma 81, 5–28.

    Article  Google Scholar 

  • Johnson D.W. (1992) Effects of forest management on soil carbon storage, Water Air Soil Pollut. 64, 83–120.

    Article  CAS  Google Scholar 

  • Johnsson H., Bergstrom L., Jansson P.-E., Paustian K. (1987) Simulated nitrogen dynamics and losses in a layered agricultural soil, Agric. Ecosyst. Environ. 18, 333–356.

    Article  Google Scholar 

  • Juo A.S., Lal R. (1979) Nutrient profile in a tropical alfisol under conventional and no-till systems, Soil Sci. 127, 168–173.

    Article  CAS  Google Scholar 

  • Kaonga M.L., Coleman K. (2008) Modelling soil organic carbon turnover in improved fallows in eastern Zambia using the RothC-26.3 model, For. Ecol. Manage. 256, 1160–1166.

    Article  Google Scholar 

  • Kelly R.H., Parton W.J., Crocker G.J., Graced P.R., Klír J., Körschens M., Poulton P.R., Richter D.D. (1997) Simulating trends in soil organic carbon in long-term experiments using the century model, Geoderma 81, 75–90.

    Article  Google Scholar 

  • Kersebaum K.C., Richter J. (1991) Modelling nitrogen dynamics in a plant-soil system with a simple model for advisory purposes, Nutr. Cycl. Agroecosyst. 27, 273–281.

    CAS  Google Scholar 

  • Kieft T.L., soroker E., Firestone M.K. (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted, Soil Biol. Biochem. 19, 119–126.

    Article  Google Scholar 

  • Kieft T.L., White C.S., Loftin S.R., Aguilar R., Craig J.A., Skaar D.A. (1998) Temporal dynamics in soil carbon and nitrogen resources at a grassland-shrubland ecotone, Ecology 79, 671–683.

    Google Scholar 

  • Kiese R., Butterbach-Bahl K. (2002) N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia, Soil Biol. Biochem. 34, 975–987.

    Article  CAS  Google Scholar 

  • Killham K., Foster R. (1994) Soil ecology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Kirschbaum M.U.F., Paul K.I. (2002) Modelling C and N dynamics in forest soils with a modified version of the CENTURY model, Soil Biol. Biochem. 34, 341–354.

    Article  CAS  Google Scholar 

  • Koch O., Tscherko D., Kandeler E. (2007) Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils, Glob. Biogeochem. Cycles 21.

  • Krysanova V., Meiner A., Roosaare J., Vasilyev A. (1989) Simulation modelling of the coastal waters pollution from agricultural watershed, Ecol. Model. 49, 7–29.

    Article  CAS  Google Scholar 

  • Krysanova V., Müller-Wohlfeil D.-I., Becker A. (1998) Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds, Ecol. Model. 106, 261–289.

    Article  CAS  Google Scholar 

  • Kuijper L.D.J., Berg M.P., Morriën E., Kooi B.W., Verhoef H.A. (2005) Global change effects on a mechanistic decomposer food web model, Glob. Change Biol. 11, 249–265.

    Article  Google Scholar 

  • Lafolie F. (1991) Modelling water flow, nitrogen transport and root uptake including physical non-equilibrium and optimization of the root water potential, Fert. Res. 27, 215–231.

    Article  CAS  Google Scholar 

  • Laio F., Porporato A., Ridolfi L., Rodriguez-Iturbe I. (2001) Plants in water-controlled ecosystems: active role in hydrological processes and response to water stress. II. Probabilistic soil moisture dynamics, Adv. Water Resour. 24, 707–723.

    Article  Google Scholar 

  • Landsberg J.J., Waring R.H. (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning, For. Ecol. Manage. 95, 209–228.

    Article  Google Scholar 

  • Li C., Frolking S., Harriss R. (1994) Modeling carbon biogeochemistry in agricultural soils, Glob. Biogeochem. Cycles 8, 237–254.

    Article  CAS  Google Scholar 

  • Lugo A., Brown S. (1993) Management of tropical soils as sinks or sources of atmospheric carbon, Plant Soil 149, 27–41.

    Article  CAS  Google Scholar 

  • Lutz H.J., Chandler R.F. (1955) Forest soils. John Willey, New York, US.

    Google Scholar 

  • Maggi F., Gu C., Riley W.J., Hornberger G.M., Venterea R.T., Xu T., Spycher N., Steefel C., Miller N.L., Oldenburg C.M. (2008) A mechanistic treatment of the dominant soil nitrogen cycling processes: model development, testing, and application, J. Geophys. Res. 113.

  • Mann L.K. (1986) Changes in soil carbon storage after cultivation, Soil Sci. 142, 279–288.

    Article  CAS  Google Scholar 

  • Manzoni S., Porporato A. (2007) A theoretical analysis of nonlinearities and feedbacks in soil carbon and nitrogen cycles, Soil Biol. Biochem. 39, 1542–1556.

    Article  CAS  Google Scholar 

  • Manzoni S., Porporato A. (2009) Soil carbon and nitrogen mineralization: Theory and models across scales, Soil Biol. Biochem. 41, 1355–1379.

    Article  CAS  Google Scholar 

  • Martins P.F.S., Cerri C.C., Volkoff B., Andreux F., Chauvel A. (1991) Consequences of clearing and tillage on the soil of a natural Amazonian ecosystem, For. Ecol. Manage. 38, 273–282.

    Article  Google Scholar 

  • Matus F.J., Rodríguez J. (1994) A simple model for estimating the contribution of nitrogen mineralization to the nitrogen supply of crops from a stabilized pool of soil organic matter and recent organic input, Plant Soil 162, 259–271.

    Article  CAS  Google Scholar 

  • Melillo J.M. (1996) Carbon and nitrogen interactions in the terrestrial biosphere: Anthropogenic effects, in: Walker B., W. Steffen (Eds.), Gl. Ch. Ter. Ecosyst., Cambridge University Press, Cambridge, UK, pp. 431–450.

    Google Scholar 

  • Mirschel W., Kretschmer H., Matthäus E., Koitzsch R. (1991) Simulation of the effects of nitrogen supply on yield formation processes in winter wheat with the model TRITSIM, Fert. Res. 27, 293–304.

    Article  CAS  Google Scholar 

  • Misson L., Tang J., Xu M., McKay M., Goldstein A. (2005) Influences of recovery from clear-cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation, Agric. For. Meteorol. 130, 207–222.

    Article  Google Scholar 

  • Molina J.A.E., Clapp C.E., Shaffer M.J., Chichester F.W., Larson W.E. (1983) NCSOIL, a model of nitrogen and carbon transformations in soil: description, calibration and behavior, Soil Sci. Soc. Am. J. 47, 85–91.

    Article  CAS  Google Scholar 

  • Moore J.C., Berlow E.L., Coleman D.C., Ruiter P.C., Dong Q., Hastings A., Johnson N.C., McCann K.S., Melville K., Morin P.J., Nadelhoffer K., Rosemond A.D., Post D.M., Sabo J.L., Scow K.M., Vanni M.J., Wall D.H. (2004) Detritus, trophic dynamics and biodiversity, Ecol. Lett. 7, 584–600.

    Article  Google Scholar 

  • Moore J.C., McCann K., de Ruiter P.C. (2005) Modeling trophic pathways, nutrient cycling, and dynamic stability in soils, Pedobiologia 49, 499–510.

    Article  CAS  Google Scholar 

  • Moore T.R., Trofymow J.A., Siltanen M., Kozak L.M. (2008) Litter decomposition and nitrogen and phosphorous dynamics in peatlands and uplands over 12 years in central Canada, Oecologia 157, 317–325.

    Article  PubMed  Google Scholar 

  • Moorhead D.L., Currie W.S., Rastetter E.B., Parton W.J., Harmon M.E. (1999) Climate and litter quality controls on decomposition: an analysis of modeling approaches, Glob. Biogeochem. Cycles 13, 575–589.

    Article  CAS  Google Scholar 

  • Moorhead D.L., Reynolds J.F. (1991) A general model of litter decomposition in the northern Chihuahuan Desert, Ecol. Model. 56, 197–219.

    Article  CAS  Google Scholar 

  • Motavalli P.P., Discekici H., Kuhn J. (2000) The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guam aquifer, Agric. Ecosyst. Environ. 79, 17–27.

    Article  CAS  Google Scholar 

  • Murty D., M.Kirschbaum U.F., McMurtrie R.E., McGilvray H. (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature, Glob. Change Biol. 8, 105–123.

    Article  Google Scholar 

  • Ndiaye B., Molénat J., Hallaire V., Gascuel C., Hamon Y. (2007) Effects of agricultural practices on hydraulic properties and water movement in soils in Brittany (France), Soil Till. Res. 93, 251–263.

    Article  Google Scholar 

  • Neel C. (1996) Modélisation couplée du transfert et des transformations de l’azote: Paramétrisation et évaluation d’un modèle en sol nu, Université Pierre et Marie Curie, Paris, p. 276

    Google Scholar 

  • Nicolardot B., Recous S., Mary B. (2001) Simulation of C and N mineralisation during crop residue decomposition: a simple dynamic model based on the C:N ratio of the residues, Plant Soil 228, 83–103.

    Article  CAS  Google Scholar 

  • Nye P.H., Greenland D.J. (1964) Changes in the soil after clearing tropical forest, Plant Soil 21, 101–112.

    Article  Google Scholar 

  • O’Brien B.J. (1984) Soil organic carbon fluxes and turnover rates estimated from radiocarbon enrichments, Soil Biol. Biochem. 16, 115–120.

    Article  Google Scholar 

  • Pansu M., Bottner P., Sarmiento L., Metselaar K. (2004) Comparison of five soil organic matter decomposition models using data from a 14C and 15N labeling field experiment, Glob. Biogeochem. Cycles 18, GB4022.

    Article  CAS  Google Scholar 

  • Pansu M., Sallih Z., Bottner P. (1998) Modelling of soil nitrogen forms after organic amendments under controlled conditions, Soil Biol. Biochem. 30, 19–29.

    Article  CAS  Google Scholar 

  • Pansu M., Sarmiento L., Metselaar K., Hervé D., Bottner P. (2007) Modelling the transformations and sequestration of soil organic matter in two contrasting ecosystems of the Andes, Eur. J. Soil Sci. 58, 775–785.

    Article  Google Scholar 

  • Parton W.J., Rassmussen P.E. (1994) Long-term effects of crop management in wheat-fallow: II. CENTURY model simulations, Soil Sci. Soc. Am. J. 58, 530–536.

    Article  Google Scholar 

  • Parton W.J., Schimmel D.S., Cole C.V., Ojima D.S. (1987) Analysis of factors controlling soil organic matter levels in great plains grasslands, Soil Sci. Soc. Am. J. 51, 1173–1179.

    Article  CAS  Google Scholar 

  • Parton W.J., Scurlock J.M.O., Ojima D.S., Gilmanov T.G., Scholes R.J., Schimel D.S., Kirchner T., Menaut J.C., Seastedt T., E. Garcia Moya, A. Kamnalrut, Kinyamario J.I. (1993) Observations and modeling of biomass and soil organic matter dynamics for the frassland biome worldwide, Glob. Biogeochem. Cycles 7, 785–809.

    Article  CAS  Google Scholar 

  • Pastor J., Post W. (1986) Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles, Biogeochemistry 2, 3–27.

    Article  Google Scholar 

  • Paul E.A. (1976) Carbon, nitrogen, phosphorous, sulfur and selenium cycles, Proc. 2nd Int. Symp. Environ. Biogechem.

  • Paul K.I., Polglase P.J. (2004) Prediction of decomposition of litter under eucalypts and pines using the FullCAM model, For. Ecol. Manage. 191, 73–92.

    Article  Google Scholar 

  • Paustian K., Andren O., Clarholm M., Hansson A.C., Johansson G., J. Lagerlof, Lindberg T., Pettersson R., Sohlenius B. (1990) Carbon and nitrogen budgets of four agro-ecosystems with annual and perennial crops, with and without N fertilization, J. Appl. Ecol. 27, 60–84.

    Article  Google Scholar 

  • Peng C., Apps M.J., Price D.T., Nalder I.A., Halliwell D.H. (1998) Simulating Carbon Dynamics Along the Boreal Forest Transect Case Study (BFTCS) in Central Canada 1. Model Testing, Glob. Biogeochem. Cycles 12, 381–402.

    Article  CAS  Google Scholar 

  • Peng C., Liu J., Dang Q., Apps M.J., Jiang H. (2002) TRIPLEX: a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics, Ecol. Model. 153, 109–130.

    Article  CAS  Google Scholar 

  • Persson T. (1983) Influence of soil animals on nitrogen mineralisation in a northern Scots pine forest, in: Lebrun P., Andre H.M., A. de Medts, C. Gregoire-Wibo, G. Wauthy (Eds.), Proc. of the VIII Int. Colloquium of soil Zoology, Louvain-la-Neuve, Belgium.

  • Pietikåinen J., Pettersson M., Bååth E. (2005) Comparison of temperature effects on soil respiration and bacterial and fungal growth rates, FEMS Microbiol. Ecol. 52, 49–58

    Article  PubMed  CAS  Google Scholar 

  • Porporato A., D’Odorico P., Laio F., Rodriguez-Iturbe I. (2003) Hydrologic controls on soil carbon and nitrogen cycles. I. Modelling scheme, Adv. Water Resour. 26, 45–58.

    Article  CAS  Google Scholar 

  • Post J., Krysanova V., Suckow F., Mirschel W., Rogasik J., Merbach I. (2007) Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins, Ecol. Model. 206, 93–109.

    Article  Google Scholar 

  • Post W.M., Emanuel W.R., Zinke P.J., Stangenberger A.G. (1982) Soil carbon pools and world life zones, Nature 298, 156–159.

    Article  CAS  Google Scholar 

  • Prasad P., Basu S., Behera N. (1995) A comparative account of the microbiological characteristics of soils under natural forest, grassland and cropfield from Eastern India, Plant Soil 175, 85–91.

    Article  CAS  Google Scholar 

  • Prober S.M., Thiele K.R., Koen L.T.B. (2005) Restoring ecological function in temperate grassy woodlands: manipulating soil nutrients, exotic annuals and native perennial grasses through carbon supplements and spring burns, J. Appl. Ecol. 42, 1073–1085.

    Article  CAS  Google Scholar 

  • Pruess K., Oldenburg C.M., Moridis G.J. (1999) TOUGH2 user’s guide version 2, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, US, p. 192.

    Book  Google Scholar 

  • Reichstein M., Rey A., Freibauer A., Tenhunen J., Valentini R., Banza J., Casals P., Cheng Y., Grünzweig J.M., Irvine J., Joffre R., Law B.E., Loustau D., Miglietta F., Oechel W., Ourcival J.-M., Pereira J.S., Peressotti A., Ponti F., Qi Y., Rambal S., Rayment M., Romanya J., Rossi F., Tedeschi V., Tirone G., Xu M., Yakir D. (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices, Glob. Biogeochem. Cycles 17, 1104.

    Article  CAS  Google Scholar 

  • Reicosky D.C., Dugas W.A., Torbert H.A. (1997) Tillage-induced soil carbon dioxide loss from different cropping systems, Soil Till. Res. 41, 105–118.

    Article  Google Scholar 

  • Reiners W.A., Bouwman A.F., Parsons W.F.J., Keller M. (1994) Tropical rain forest conversion to pasture: changes in vegetation and soil properties, Ecol. Appl. 4, 363–377.

    Article  Google Scholar 

  • Rey A., Pegoraro E., Tedeschi V., I. De Parri, Jarvis P., Valentini R. (2002) Annual variation in soil respiration and its components in a coppice oak forest in Central Italy, Glob. Change Biol. 8, 851–866.

    Article  Google Scholar 

  • Richards G.P. (2001) The FullCAM carbon accounting model: development, calibration and implementation for the national carbon accounting system, Australian Greenhouse Office, Canberra, Australia, pp. 6–27.

    Google Scholar 

  • Richards G.P., Evans D. (2000) Carbon accounting model for forests (CAMFor). User manual version 3.5, Australian Greenhouse Office, Canberra, Australia, p. 64.

    Google Scholar 

  • Rodrigo A., Recous S., Neel C., Mary B. (1997) Modelling temperature and moisture effects on C-N transformations in soils: comparison of nine models, Ecol. Model. 102, 325–339.

    Article  CAS  Google Scholar 

  • Rodriguez-Iturbe I., Porporato A. (2004) Ecohydrology of watercontrolled ecosystems. Soil moisture and plant dynamics, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Rodriguez-Iturbe I., Porporato A., Laio F., Ridolfi L. (2001) Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: I. Scope and general outline, Adv. Water Resour. 24, 695–705.

    Article  Google Scholar 

  • Roger-Estrade J., Richard G., Caneill J., Boizard H., Coquet Y., Defossez P., Manichon H. (2004) Morphological characterisation of soil structure in tilled fields: from a diagnosis method to the modelling of structural changes over time, Soil Till. Res. 79, 33–49.

    Article  Google Scholar 

  • Rustad L.E., Huntington T.G., Boone R.D. (2000) Controls on soil respiration: Implications for climate change, Biogeochemistry 48, 1–6.

    Article  Google Scholar 

  • Ryel R.J., Leffler A.J., Peek M.S., Ivans C.Y., Caldwell M.M. (2004) Water conservation in Artemisia tridentata through redistribution of precipitation, Oecologia 141, 335–345.

    Article  PubMed  CAS  Google Scholar 

  • Sallih Z., Pansu M. (1993) Modelling of soil carbon forms after organic amendment under controlled conditions, Soil Biol. Biochem. 25, 1755–1762.

    Article  Google Scholar 

  • Savage K.E., Davidson E.A. (2001) Interannual variation of soil respiration in two New England forests, Glob. Biogeochem. Cycles 15, 337–350.

    Article  CAS  Google Scholar 

  • Schimel D.S., Braswell B.H., Holland E.A., McKeown R., Ojima D.S., T.H. Painter, Parton W.J., Townsend A.R. (1994) Climatic, Edaphic, and Biotic Controls Over Storage and Turnover of Carbon in Soils, Glob. Biogeochem. Cycles 8, 279–293.

    Article  CAS  Google Scholar 

  • Schinner F., Kandeler E., Öhlinger R., Margesin R. (1995) Methods in soil biology, Springer-Verlag, Berlin, New York.

    Google Scholar 

  • Schlesinger W.H., Andrews J.A. (2000) Soil Respiration and the Global Carbon Cycle, Biogeochemistry 48, 7–20.

    Article  CAS  Google Scholar 

  • Scholes M.C., Powlson D., Tian G. (1997) Input control of organic matter dynamics, Geoderma 79, 25–47.

    Article  CAS  Google Scholar 

  • Schwinning S., Sala O.E. (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems, Oecologia 141, 211–220.

    PubMed  Google Scholar 

  • Schwinning S., Starr B.I., Ehleringer J.R. (2003) Dominant cold desert plants do not partition warm season precipitation by event size, Oecologia 136, 252–260.

    Article  PubMed  Google Scholar 

  • Scott-Denton L.E., Rosenstiel T.N., Monson R.K. (2006) Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration, Glob. Change Biol. 12, 205–206.

    Article  Google Scholar 

  • Shaffer M.J., Halvorson A.D., Pierce F.J. (1991) Nitrate leaching and economic analysis package (NLEAP): model description and application, in: Follet R.F. (Ed.), Managing nitrogen for groundwater quality and farm profitability, ASA, Madison, Wisconsin, US, pp. 285–232.

    Google Scholar 

  • Smil V. (1999) Crop residues: agriculture’s largest Harvest, Bioscience 49, 299–308.

    Article  Google Scholar 

  • Smith P., Andrén O., Brussaard L., Dangerfield M., Ekschmitt K., Lavelle P., Tate K. (1998) Soil biota and global change at the ecosystem level: describing soil biota in mathematical models, Glob. Change Biol. 4, 773–784.

    Article  Google Scholar 

  • Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., Chertov O.G., Coleman K., Franko U., Frolking S., Jenkinson D.S., Jensen L.S., Kelly R.H., Klein-Gunnewiek H., Komarov A.S., Li C., Molina J.A.E., Mueller T., Parton W.J., Thornley J.H.M., Whitmore A.P. (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments, Geoderma 81, 153–225.

    Article  Google Scholar 

  • Stark J.M., Firestone M.K. (1995) Mechanisms for soil moisture effects on activity of nitrifying bacteria, Appl. Environ. Microbiol. 61, 218–221.

    PubMed  CAS  Google Scholar 

  • Stevenson F.J., Cole M.A. (1999) Cycles of soil. Carbon, nitrogen, phosphorous, sulfur, micronutrients, John Wiley & Sons, New York, USA.

    Google Scholar 

  • Thornley J.H.M. (1991) A transport-resistance model of forest growth and partitioning, Ann. Bot. 68, 211–226.

    Google Scholar 

  • Thornley J.H.M., Bergelson J., Parsons A.J. (1995) Complex dynamics in a carbon-nitrogen model of a grass-legume pasture, Ann. Bot. 75, 79–94.

    Article  PubMed  CAS  Google Scholar 

  • Van Gestel M., Merckx R., Vlassak K. (1993) Microbial biomass responses to soil drying and rewetting: the fate of fast- and slow-growing microorganisms in soils from different climates, Soil Biol. Biochem. 25, 109–123.

    Article  Google Scholar 

  • Veldkamp E. (1994) Organic carbontTurnover in three tropical soils under pasture after deforestation, Soil Sci. Soc. Am. J. 58, 175–180.

    Article  Google Scholar 

  • Verberne E.L., Hassink J., De Willigen P., Groot J.J.R., Van Veen J. (1990) Modelling organic matter dynamics in different soils, Neth. J. Agric. Sci. 38, 221–238.

    CAS  Google Scholar 

  • Verhoef H., Brussaard L. (1990) Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil animals, Biogeochemistry 11, 175–211.

    Article  Google Scholar 

  • Vitousek P.M. (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests, Ecology 65, 285–298.

    Article  CAS  Google Scholar 

  • Vitousek P.M., Sanford R.L. (1986) Nutrient cycling in moist tropical forest, Annu. Rev. Ecol. Syst. 17, 137.

    Article  Google Scholar 

  • Wattenbach M., Hattermann F., Weng R., Wechsung F., Krysanova V., Badeck F. (2005) A simplified approach to implement forest ecohydrological properties in regional hydrological modelling, Ecol. Model. 187, 40–59.

    Google Scholar 

  • White R.E. (1997) Principles and practice of soil science, Blackwell Science, Oxford, UK.

    Google Scholar 

  • Wolf J., De Wit C., Van Keulen H. (1989) Modeling long-term crop response to fertilizer and soil nitrogen. I. Model description and application, Plant Soil 120, 11–22.

    Article  Google Scholar 

  • Wolf J., Van Keulen H. (1989) Modeling long-term crop response to fertilizer and soil nitrogen. II. Comparison with field results, Plant Soil 120, 23–38.

    Article  Google Scholar 

  • Xu L., Baldocchi D.D., Tang J. (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature, Glob. Biogeochem. Cycles 18.

  • Xu T., Sonnenthal E., Spycher N., Pruess K. (2006) TOUGHREACT-A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration, Comput. Geosci. 32, 145–165.

    Article  CAS  Google Scholar 

  • Young A., Young R. (2001) Soils in the Australian landscape, Oxford University Press, Victoria, Australia.

    Google Scholar 

  • Young T.P., Petersen D.A., Clary J.J. (2005) The ecology of restoration: historical links, emerging issues and unexplored realms, Ecol. Lett. 8, 662–673.

    Article  Google Scholar 

  • Zelenev V.V., A.H.C. vanBruggen, Leffelaar P.A., Bloem J., Semenov A.M. (2006) Oscillating dynamics of bacterial populations and their predators in response to fresh organic matter added to soil: the simulation model “BACWAVE-WEB”, Soil Biol. Biochem. 38, 1690–1711.

    Google Scholar 

  • Zheng D.W., Agren G.I., Bengtsson J. (1999) How do soil organisms affect total organic nitrogen storage and substrate nitrogen to carbon ratio in soils? A theoretical analysis, Oikos 86, 430–442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Batlle-Aguilar.

About this article

Cite this article

Batlle-Aguilar, J., Brovelli, A., Porporato, A. et al. Modelling soil carbon and nitrogen cycles during land use change. A review. Agronomy Sust. Developm. 31, 251–274 (2011). https://doi.org/10.1051/agro/2010007

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro/2010007

Keywords

Navigation