Skip to main content

Advertisement

Log in

Biological nitrogen fixation and socioeconomic factors for legume production in sub-Saharan Africa: a review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Low crop productivity is a general problem facing most farming systems in sub-Saharan Africa (SSA). These low yields are pronounced in grain legumes and are often associated with declining soil fertility and reduced N2-fixation due to biological and environmental factors. Unfortunately, the majority of African small farmers are now unable to afford the high mineral fertilizer prices. More than 75% of the fertilizers used in Africa are imported, putting pressure on foreign exchange. Low cost and sustainable technical solutions compatible with the socioeconomic conditions of small farmers are needed to solve soil fertility problems. Biological nitrogen fixation (BNF), a key source of N for farmers using little or no fertilizer, constitutes one of the potential solutions and plays a key role in sustainable grain legumes (e.g., soybean) production. Given the high cost of fertilizer in Africa and the limited market infrastructure for farm inputs, current research and extension efforts have been directed to integrated nutrient management, in which legumes play a crucial role. Inoculation with compatible and appropriate rhizobia may be necessary where a low population of native rhizobial strains predominates and is one of the solutions which grain legume farmers can use to optimize yields. It is critical for sustained yield in farmlands deficient in native rhizobia and where N supply limits production. Research on use of Rhizobium inoculants for production of grain legumes showed it is a cheaper and usually more effective agronomic practice for ensuring adequate N nutrition of legumes, compared with the application of N fertilizer. Here, we review past and ongoing interventions in Rhizobium inoculation (with special reference to soybean) in the farming systems of SSA with a view to understanding the best way to effectively advise on future investments to enhance production and adoption of BNF and inoculant technologies in SSA. The major findings are: (1) complete absence of or very weak institutions, policy and budgetary support for biotechnology research and lack of its integration into wider agricultural and overall development objectives in SSA, (2) limited knowledge of inoculation responses of both promiscuous and specifically nodulating soybean varieties as well as the other factors that inhibit BNF, hence a weak basis for decision-making on biotechnology issues in SSA, (3) limited capacity and lack of sustainable investment, (4) poorly developed marketing channels and infrastructure, and limited involvement of the private sector in the distribution of inoculants, and (5) limited farmer awareness about and access to (much more than price) inoculants. The lessons learned include the need: (1) to increase investment in Rhizobium inoculation technology development, and strengthen policy and institutional support, (2) for public private partnership in the development, deployment and dissemination of BNF technologies, (3) to develop effective BNF dissemination strategies (including participatory approach) to reach farmers, (4) for greater emphasis on capacity building along the BNF value chain, and (5) for partnership between universities in SSA and those in the North on BNF research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASK:

Agricultural Society of Kenya

BCR:

Benefit Cost Ratio

BNF:

Biological Nitrogen Fixation

CAN:

Calcium Ammonium Nitrate

CIAT:

Centro Internacional Agricultura de Tropical

DAP:

Di-Ammonium Phosphate

DR-Congo:

Democratic Republic of Congo

FAO:

Food and Agriculture Organization of the United Nation

FYM:

Farmyard manure

IAEA:

International Atomic Energy Agency

IITA:

International Institute of Tropical Agriculture

IFDC:

International Fertilizer Development Center

INM:

Integrated Nutrient Management

ISAR:

Institut des Sciences Agronomique du Rwanda

KARI:

Kenya Agricultural Research Institute

KIOF:

Kenya Institute of Organic Farming

KShs:

Kenya Shillings

LSD:

Least Significant Difference

MIRCEN:

Microbiological Resources Center

MRR:

Marginal Rate of Returns

N:

Nitrogen

NGO:

Non-governmental organization

NPK:

Nitrogen Phosphorus Potassium

OMMN:

Organic Matter Management Network

P:

Phosphorus

R&D:

Research and Development

SPRL:

Soil Productivity Research Laboratory

SSA:

Sub-Saharan Africa

SUA:

Sokoine University of Agriculture

TGx:

Tropical Glycine crosses

UNEP:

United Nations Environment Program

UNESCO:

nited Nations Educational, Scientific and Cultural Organization

USAID:

nited States Agency for International Development

USDA:

nited States Department of Agriculture

US$:

nited States of America Dollar

References

  • Abaidoo R., Woomer P. (2008) Optimizing nitrogen fixation in soybean genotypes in Africa: the relevance of biophysical constraints, PowerPoint presentation during an International Workshop on Rhizobium Inoculation, held at Impala Hotel, Arusha Tanzania, 17–21 March 2008.

  • Abdel-Wahab H.H., Zahran H.H., Abd-Alla M.H. (1996) Root hair infection and nodulation of four legumes as affected by the form and the application time of nitrogen fertilizer, Folia Microbiol. 41, 303–308.

    Article  Google Scholar 

  • Alves B.J.R., Lara-Cabezas W.A.R., David E.A., Urquiaga S. (1999) Balanco de N em soja estabelecida em um Latossolo Vermelho Escuro do triangulo mineiro em condicoes de plantio direto e prepare convencional do solo, in: Congresso Brasileiro de Ciencia do Solo, Brasilia, Brazil.

  • Alves B.J.R., Zotarelli L., Araujo E.S., Fernandes F.M., Heckler J.C., Medeiros A.F.A., Boddey R.M., Urquiaga S. (2005) Balanco de N em rotacao de culturas sob plantio direto em Dourados, Boletim de Prequita e Desenvolvimento 07, Embrapa Agrobiologia, Seropedica, Brazil.

  • Amijee F., Giller K.E. (1998) Environmental constraints to nodulation and Nitrogen fixation of Phaseolus vulgaris L. in Tanzania. I. A survey of soil fertility, root nodulation and multi-locational responses to Rhizobium inoculation, Afr. Crop Sci. J. 6, 159–169.

    Google Scholar 

  • Araujo E.S., Jantalia C.P., Boddey R.M., Urquiaga S., Alves B.J.R. (2006) Importancia do N das raizes da soja para a produtividade da cultura suceeora e para o balance de N do sistema Cicular Tecnica 14. Embrapa Agrobiologia, Seropedica, Brazil.

    Google Scholar 

  • Arreseigor C., Minchin F.R., Gordon A.J., Nath A.K. (1997) Possible cause of the physiological decline in soybean nitrogen fixation in response to nitrate, J. Exp. Bot. 48, 905–913.

    Article  Google Scholar 

  • Bala A. (2008) Recent advances in soybean inoculum research and applications: Towards enhancing productivity in smallholder agriculture, Paper presented at an International Workshop on Rhizobium Inoculation, held at Impala Hotel, Arusha Tanzania, 17–21 March 2008.

  • Boahen S.K. (2008) Inoculation response: Overcoming the challenges posed by indigenous rhizobia, PowerPoint presentation during an International Workshop on Rhizobium Inoculation, held at Impala Hotel, Arusha Tanzania, 17–21 March 2008.

  • Bohlool B., Ladha J., Garrity D., George T. (1992) Biological nitrogen fixation for sustainable agriculture: A perspective, Plant Soil 141, 1–11.

    Article  CAS  Google Scholar 

  • Brenner C. (1996) Policy options for developing countries: Getting into the agricultural biotechnology act? Biotechnology and Development Monitor No. 29, December.

  • Bromfield E.S.P., Ayanaba A. (1980) The efficacy of soybean inoculation on acid soil in tropical Africa, Plant Soil 54, 95–106.

    Article  CAS  Google Scholar 

  • Cassien B., Woomer P.L. (1998) Recent history of the BNF activities at the Institut des Sciences Agronomique du Rwanda, in: Dakora F.D. (Ed.), Biological Nitrogen Fixation in Africa: Linking Process to Progress, African Association for Biological Nitrogen Fixation, Cape Town, South Africa, pp. 33–34.

    Google Scholar 

  • Cassman K.G., Munns D.N., Beck D.P. (1981) Phosphorus nutrition of Rhizobium japonicum: strain differences in storage and utilization, Soil Sci. Soc. Am. J. 45, 517–523.

    Article  CAS  Google Scholar 

  • Chianu J., Tsujii H. (2005) Integrated nutrient management in the farming systems of the savannas of northern Nigeria: what future? Outlook Agric. 34, 197–202.

    Article  Google Scholar 

  • Chowdhury M.S. (1977) Response of soybean to Rhizobium inoculation at Morogoro, Tanzania, in: Ayanaba A., Dart P.J. (Eds.), Biological Nitrogen Fixation in Farming Systems of the Humid Tropics, John Wiley & Sons, London, pp. 245–253.

    Google Scholar 

  • Corby H.D.L. (1965) Report of national Rhizobium trial for soyabeans, 1963/64, Mimeo 236/59, Grasslands Research Station, Marandellas, Zimbabwe.

    Google Scholar 

  • Dakora F.D. (1984) Nodulation and nitrogen fixation by groundnut in amended and un-amended field soils in Ghana, in: Ssali H., Keya S.O. (Eds.), Biological nitrogen fixation in Africa, pp. 324–339.

  • Dakora F.D., Keya S.O. (1997) Contribution of legume nitrogen fixation to sustainable agriculture in sub-Saharan Africa, Soil Biol. Biochem. 29, 809–817.

    Article  CAS  Google Scholar 

  • Danso S.K.A. (1990) Evaluation of biological nitrogen fixation in plants, in: Gueye M., Mulongoy K (Eds.), Maximiser la Fixation Biologique de L’Azote pour la Production Agricole et Forestière en Afrique, pp. 258–271.

  • Dapaah H., Asafu-Agyei J., Ennin S., Yamoah C. (2003) Yield stability of cassava, maize, soybean and cowpea intercrops, J. Agric. Sci. 140, 73–82.

    Article  Google Scholar 

  • da Silva P.M., Tsai S.M., Bonetti R. (1993) Response to inoculation and N fertilization for increased yield and biological nitrogen fixation of common bean (Phaseolus vulgaris L.), Plant Soil 152, 123–130.

    Article  Google Scholar 

  • Date R.A. (1999) Inoculated legumes in cropping systems of the tropics, Field Crops Res. 65, 123–136.

    Article  Google Scholar 

  • Delgado M.J., Ligero F., Lluch C. (1994) Effect of salt stress on growth and nitrogen fixation by pea, faba bean, common bean and soybean plants, Soil Biol. Biochem. 26, 371–376.

    Article  CAS  Google Scholar 

  • Deneyschen T., Strijdom B.W., Law I.J. (1998) Comparison of South African legume inoculants manufactured in 1978–79 and in 1995–97, in: Dakora F.D. (Ed.), Biological Nitrogen Fixation in Africa: Linking Process to Progress, African Association for Biological Nitrogen Fixation, Cape Town, South Africa, pp. 50–51.

    Google Scholar 

  • Devries J.D., Bennett J.M., Albrecht S.L., Boote K.J. (1989) Water relations, nitrogenase activity and root development of three grain legumes in response to soil water deficits, Field Crops Res. 21, 215–226.

    Article  Google Scholar 

  • Dowlig D. N., Broughton W. J. (1986) Competition for nodulation of legumes, Annu. Rev. Microbiol. 40, 131–157.

    Article  Google Scholar 

  • Duong T.P., Diep C.N., Khiem N.T., Hiep N H., Toi N.V., Lich N.V., Nhan L.T.K. (1984) Rhizobium inoculant for soybean [Glycine max (L.) Merrill] in Mekong Delta. II. Response of soybean to chemical nitrogen fertilizer and Rhizobium inoculation, Plant Soil 79, 241–247.

    Article  Google Scholar 

  • Eaglesham A.R.J. (1989) Nitrate inhibition of root nodule symbiosis in doubly rooted soybean plants, Crop Sci. 29, 115–119.

    Article  Google Scholar 

  • El-Hamdaoui, E., M. Redondo-Nieto, R. Rivilla, I. Bonilla, L. Bolanõs. (2003) Effects of boron and calcium nutrition on the establishment of the Rhizobium leguminosarum -pea (Pisum sativum) symbiosis and nodule development under salt stress, Plant Cell Environ. 26, 1003–1011.

    Article  CAS  Google Scholar 

  • Gates C.T., Muller W.F. (1979) Nodule and plant development in the soybean Glycine max (L.) Merr.: growth response to Nitrogen, Phosphorus and Sulfur, Aust. J. Bot. 27, 203–215.

    Article  CAS  Google Scholar 

  • Giller K.E. (2001) Nitrogen Fixation in Tropical Cropping Systems, 2nd ed., CABI Publishing, Wallingford, Oxford.

    Book  Google Scholar 

  • Giller K.E., McDonagh J.F., Cadisch G. (1994) Can biological nitrogen fixation sustain agriculture in the tropics? in: Syers J.K., Rimmer D.L. (Eds.), Soil science and sustainable land management in the tropics, CABI, Wallingford, UK, pp. 173–191.

    Google Scholar 

  • Graham P.H., Draeger K., Ferrey M.L., Conroy M.J., Hammer B.E., Martinez E., Naarons S.R., Quinto C. (1994) Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899, Can. J. Microbiol. 40, 198–207.

    Article  CAS  Google Scholar 

  • Hardarson G., Bunning S, Montanez A., Roy R., MacMillan A. (2003) The value of symbiotic nitrogen fixation by grain legumes in comparison to the cost of nitrogen fertilizer used in developing countries, in: Hardarson G., Broughton W. (Eds.), Maximizing the use of biological nitrogen fixation in agriculture, Kluwer, pp. 213–220.

  • Hungria M., Franchini J.C., Campo R.J., Crispino C.C., Moraes J.Z., Sibaldelli R.N.R., Mends I.C., Arihara J. (2006) Nitrogen nutrition of soybean in Brazil: contributions of biological N2-fixation and N fertilizer to grain yield, Can. J. Plant Sci. 86, 927–939.

    Google Scholar 

  • Hunt P.J., Wollum A.G., Matheny T.A. (1981) Effects of soil water on Rhizobium japonicum infection, nitrogen accumulation and yield in bragg soybean, Agric. J. 73, 501–505.

    Google Scholar 

  • IFDC (International Fertilizer Development Center) (2008) Soaring fertiliser prices threaten world’s poorest farmers. Online at: http://ifdc.org/New_Layout/News_PressReleases/index.html.

  • Imsande J. (1986) Inhibition of nodule development in soybean by nitrate or reduced nitrogen, J. Exp. Bot. 37, 348–355.

    Article  Google Scholar 

  • Isol T., Yoshida S. (1990) Growth, nodulation and nitrogen fixation of soybean plants with seeds treated with kasungamycin, Soil Sci. Plant Nutr. 36, 283–288.

    Google Scholar 

  • Java B., Everett R., O’Dell T., Lambert S. (1995) Legume seeding trials in a forested area of north-central Washington, Tree Planters’ Notes 46, 19–27.

    Google Scholar 

  • Jayne T., Boughton D. (2006) Strategic option for achieving CAADP’s agricultural growth targets, Paper presented at the SAKSS-SA regional workshop, Johannesburg, October 4th 2006.

  • Johnson P., Zitsanza N., Sukume C., Rukuni M. (1994) The Oilseed Subsector in Zimbabwe, A Study for the World Bank (mimeo).

  • Kaizzi C.K. (2002) The potential benefit of green manures and inorganic fertilizers in cereal production on contrasting soils in eastern Uganda, Ecology and Development Ser. 4, Cuviller Verlag, Gottingen, Germany.

    Google Scholar 

  • Kannaiyan S. (1993) Nitrogen contribution by Azolla to rice crop, Proc. Indian Natl. Sci. Acad. Part B Biol. Sci. 59, 309–314.

    Google Scholar 

  • Khonje D.J. (1989) Adoption of Rhizobium inoculation technology for pasture improvement in sub-Saharan Africa, Department of Agricultural Research, Chitedze Agricultural Research Station, Lilongwe, Malawi, p. 14.

    Google Scholar 

  • Kipkoech A.K., Okiror M.A., Okalebo J.R., Martin H.K. (2007) Production efficiency and economic potential of different soil fertility management strategies among groundnut farmers of Kenya, Sci. World J. 2, 15–21.

    Google Scholar 

  • Kirda C., Danso S.K.A., Zapata F. (1989) Temporal water stress effects on nodulation, nitrogen accumulation and growth of soybean, Plant Soil 120, 49–55.

    Article  Google Scholar 

  • Kueneman E.A., Root W.R., Dashiel K.E., Hohenberg J. (1984) Breeding soybeans for the tropics capable of nodulating effectively with indigenous Rhizobium spp., Plant Soil 8, 387–396.

    Article  Google Scholar 

  • Mafongoya P.L., Bationo A., Kihara J., Waswa B.S. (2007) Appropriate technologies to replenish soil fertility in Africa, in: Bationo A., Waswa B.S., Kihara J., Kimetu J. (Eds.), Advances in integrated soil fertility management in sub Saharan Africa: challenges and opportunities, Springer, Netherlands, pp. 29–44.

    Chapter  Google Scholar 

  • Maingi J., Shisanya C., Gitonga N., Hornetz B. (2001) Nitrogen fixation by common bean (Phaseolus vulgaris L.) in pure and mixed stands in semi-arid south-east Kenya, Eur. J. Agron. 14, 11–12.

    Article  Google Scholar 

  • Mallik M.A.B., Tesfai K. (1993) Pesticidal effect on soybean-rhizobia symbiosis, Plant Soil 85, 33–41.

    Article  Google Scholar 

  • Manyong V.M., Otite O., Dashiell K. (1998) Spread of new soybean varieties in a traditional soybean growing area of Nigeria, in: Bezuneh T., Ouedraogo S., Menyonga J.M., Zongo J.-D., Ouedraogo M. (Eds.), Towards Sustainable Farming Systems in Sub-Saharan Africa, AAFSRET, Ouagadougo, pp. 151–162.

    Google Scholar 

  • Marufu L., Karanja N., Ryder M. (1995) Legume inoculant production and use in East and Southern Africa, Soil Biol. Biochem. 27, 735–738.

    Article  CAS  Google Scholar 

  • Michiels J., Verreth C., Vanderleyden J. (1994) Effects of temperature stress on bean nodulating Rhizobium strains, Appl. Environ. Microbiol. 60, 1206–1212.

    PubMed  CAS  Google Scholar 

  • Miller R.H., May S. (1991) Legume inoculation: Successes and failures, in: Keister D.L., Cregan P.B. (Eds.), The Rhizosphere and plant growth, Kluwer Academic Publishers, Boston, pp. 123–134.

    Google Scholar 

  • Morris M., Kelly V., Kopicki R., Byerlee D. (2007) Fertilizer use in African agriculture: Lessons learned and good practice guidelines, The World Bank, Washington DC.

    Book  Google Scholar 

  • Mpepereki S., Javaheri F., Davis P., Giller K.E. (2000) Soybeans and sustainable agriculture: promiscuous soybeans in Southern Africa, Field Crops Res. 65, 137–149.

    Article  Google Scholar 

  • Mugabe J. (1994) Research on biofertilizers: Kenya, Zimbabwe and Tanzania, Biotechnol. Dev. Monitor, 18, 9–10.

    Google Scholar 

  • Munevar F., Wollum A.G. (1982) Response of soybean plants to high root temperature as affected by plant cultivar and Rhizobium strain, Agron. J. 74, 138–142.

    Article  Google Scholar 

  • Mushi C.S. (1997) Annual report — bean breeding. National Bean Programme, Selian Agricultural Research Institute, Arusha, Tanzania.

    Google Scholar 

  • Musiyiwa K., Mpepereki S., Giller K.E. (2005a) Physiological diversity of rhizobia nodulating promiscuous soybean in Zimbabwean soils, Symbiosis 40, 97–107.

    Google Scholar 

  • Musiyiwa K., Mpepereki S., Giller K.E. (2005b) Symbiotic effectiveness and host ranges of indigenous soybean varieties in Zimbabwean soils, Soil Biol. Biochem. 37, 1169–1176.

    Article  CAS  Google Scholar 

  • Mvula A.B., Tembo H., Mwale M., Woomer P.L. (1996) Growth response by common bean (Phaseolus varieties) to inoculation with Rhizobium leguminasarium bv. Phaseoli, AABNF 1996 proceedings.

  • Nangju D. (1980) Soybean response to indigenous rhizobia as influenced by cultivar origin, Agronomy 72, 403–406.

    Article  Google Scholar 

  • Ndakidemi P.A., Dakora F.D., Nkonya E.M., Ringo D and Mansoor H. (2006) Yield and economic benefits of common bean (Phaseolus vulgaris) and soybean (Glycine max) inoculation in northern Tanzania, Austr. J. Exp. Agric. 46, 571–577.

    Article  Google Scholar 

  • Nehring R., Vialou A., Erickson K., Sandretto C. (2008) Assessing Economic and Environmental Impacts of Ethanol Production on Fertilizer Use in Corn, Annual Meeting, February 2–6, Dallas, Texas 6736, Southern Agricultural Economics Association.

  • Nkonya E., Pender J., Kaizzi C., Kato E., Mugarura S., Ssali H., Muwonge J. (2008) Linkages between land Management, land degradation and poverty in Africa: The case of Uganda, Washington D.C., IFPRI Research Report (forthcoming).

  • Odame H. (1997). Biofertilizer in Kenya: Research, production and extension dilemmas, Biotechnol. Dev. Monitor 30, 20–23.

    Google Scholar 

  • Okogun J.A., Sanginga N. (2003) Can introduced and indigenous rhizobial strains compete for nodule formation by promiscuous soybean in the moist savanna agroecological zone of Nigeria? Biol. Fertil. Soils 38, 26–31.

    Article  Google Scholar 

  • Osunde A.O., Gwam S., Bala A., Sanginga N., Okogun J.A. (2003) Responses to rhizobial inoculation by two promiscuous soybean cultivars in soils of the southern Guinea savanna of Nigeria, Biol. Fertil. Soils 37, 274–279.

    Google Scholar 

  • Parker C.A. (1977) Perspectives in biological dinitrogen fixation, in: Hardy R.W.F., Silver W.S. (Eds.), A Treatise on Dinitrogen fixation, Sect. 3, Willey (Inter-science), New York, USA.

    Google Scholar 

  • Paynel F., Lesuffleur F., Bigot J., Diquelou S., Cliquet J B. (2008) A study of 15N transfer between legumes and grasses, Agron. Sustain. Dev. 28, 281–290.

    Article  CAS  Google Scholar 

  • Poshiwa X., Nyoka R., Chikumba N., Gatsi T., Chakoma I. (2006) A baseline socio-economic evaluation of an European Union funded project on use of Micro-Symbionts in agroforestry systems in Zimbabwe, J. Sustain. Dev. Africa, 186–196.

  • Pulver E.L., Brockman F., Wien H.C. (1982) Nodulation of soybean cultivars with Rhizobium spp. and their response to inoculation with R. japonicum, Crop Sci. 22, 1065–1070.

    Article  Google Scholar 

  • Ranga-Rao V., Ayanaba A., Eaglesham A.R.J., Thottappilly G. (1984) Effects of Rhizobium inoculation on field-grown soybeans in Western Nigeria and assessment of inoculum persistence during a two-year fallow, Trop. Agric. 62, 125–130.

    Google Scholar 

  • Ranga-Rao V., Thottapilly G., Ayanaba A. (1981) Studies on the persistence of introduced strains of Rhizobium japonicum in soil during fallow and effects on soybean growth and yield, in: BNF Technology for Tropical Agriculture, pp. 309–315.

  • Rinnofner T., Friedel J.K., Kruijff de R., Pietsch G., Freyer B. (2008) Effect of catch crops on N dynamics and following crops in organic farming, Agron. Sustain. Dev. 28, 551–558.

    Article  CAS  Google Scholar 

  • Ryan J.G., Spencer D.C. (2001) Future Challenges and Opportunities for Agricultural R&D in the Semi-arid Tropics, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Andhra Pradesh, India, 79 p.

    Google Scholar 

  • Saint Macary H., Bernard P., Montange D., Tranchant J.P., Verniau S. (1986) Setting and diffusion of a production system for legume Rhizobium inoculants, Symbiosis 2, pp. 363–366.

    Google Scholar 

  • Sakala K.M. (1990) Response of beans (Phaseolus vulgaris L.) to inoculation and fertilizer application, in: Soil Productivity Research Program Annual Report, Zambia.

  • Sanginga N., Okogun J.A., Vanlauwe B., Diels J., Carsky R.J., Dashiell K. (2001) Nitrogen contribution of promiscuous soybean in maizebased cropping systems, in: Sustaining Soil Fertility in West Africa, SSSA Special Publication 58, Madison, WI, pp. 157–177.

    Google Scholar 

  • Sanginga N., Thottappilly G., Dashiel K. (2000) Effectiveness of rhizobia nodulating recent promiscuous soybean selections in the moist savanna of Nigeria, Biol. Biochem. 32, 127–133.

    Article  CAS  Google Scholar 

  • Serraj R., Sinclair T., Purcell L. (1999) Symbiotic N2 fixation response to drought, J. Exp. Bot. 50, 143–155.

    Article  CAS  Google Scholar 

  • Silver M.C. (1976) Symbiotic nitrogen fixation by groundnuts (Arachis hypogea) in a ferrallitic soil in Uganda, MSc. (Agric.) Thesis, Makerere University, Uganda.

    Google Scholar 

  • Silver M.C.R., Nkwiine C. (2007) A review of work on rhizosphere microbiota in Uganda, Afr. J. Ecol. 45, 20–26.

    Article  Google Scholar 

  • Sinclair T.R., Muchow R.C., Bennet J.M., Hammond L.C. (1987) Relative sensitivity of nitrogen and biomass accumulation to drought in field-grown soybean, Agron. J. 79, 986–991.

    Article  Google Scholar 

  • Singleton P.W., Tavares J.S. (1986) Inoculation response of legumes in relation to the number and ineffectiveness of indigenous Rhizobium populations, Appl. Environ. Microbiol. 51, 1013–1018.

    PubMed  CAS  Google Scholar 

  • Sivestre P. (1970) Travaux de l’ IRAT sur le soya, Ford Foundation Grain Legume Seminar, 22–26 June, Ibadan, Nigeria.

  • Smaling, E.M.A., Roscoe, R., Lesschen, J.P., Bouwman, A.F., Comunello F. (2008) From forest to waste: Assessment of the Brazilian soybean chain, using nitrogen as a marker, Agric. Ecosyst. Environ. (in press).

  • Strijdom B.W. (1998) South African studies on biological nitrogen-fixing systems and the exploitation of the nodule bacterium-legume symbiosis, South African J. Sci. 94, 11–23.

    CAS  Google Scholar 

  • Strijdom B.W., van Rensburg J. (1981) Effect of steam sterilization and gamma irradiation of peat on the quality of Rhizobium inoculants, Appl. Environ. Microbiol. 41, 1344–1347.

    PubMed  CAS  Google Scholar 

  • Thies J.E., Singleton P.W., Bohlool B.B. (1991) Modeling symbiotic performance of introduced rhizobia in the field by use of indices of indigenous population size and nitrogen status of the soil, Appl. Environ. Microbiol. 57, 29–37.

    PubMed  CAS  Google Scholar 

  • Tran Y.T. (2004) Response to and benefits of rhizobial inoculation of soybean in the south of Vietnam, http://www.Cropscience.org.au/icsc2004/poster/2/5/6/1103_tranyt.htm.

  • Tu J.C. (1981) Effect of salinity on Rhizobium-root hair interaction, nodulation and growth of soybean, Can. J. Plant Sci. 61, 231–239.

    Article  Google Scholar 

  • Van Rensburg H., Strijdom B.W. (1969) Strains of Rhizobium japnicum and inoculant production in South Africa, Phytophylactica 1, 201–204.

    Google Scholar 

  • Weaver R.W., Frederick L.R. (1974) Effect of inoculum rate on competitive nodulation of Glycine max L. Merrill. II. Field studies, Agron. J. 66, 233–236.

    Article  Google Scholar 

  • Woomer P.L., Karanja N.K., Mekki E.I., Mwakalombe B., Tembo H., Nyika M., Silver M., Nkwiine C., Ndakidemi P., Msumali G. (1997), Indigenous rhizobia, legume response to inoculation and farmer awareness of inoculants in East and Southern Africa, in: Africa Crop Science Conference Proceedings, Vol. 3.

  • Woomer P.L., Karanja N.K., Okalebo J.R. (1999) Opportunities for improving integrated nutrient management by smallhold farmers in the Central Highlands of Kenya, Afr. Crop Sci. J. 4, 441–454.

    Google Scholar 

  • World Bank (2008) World Development Report: Agriculture for Development, World Bank, Washington D.C.

    Google Scholar 

  • Yanggen D., Kelly V., Reardon T., Naseem A. (1998) Incentives for fertilizer use in sub-Saharan Africa: A review of empirical evidence on fertilizer response and profitability, MSU International Development Working Paper No. 70, Department of Agricultural Economics, Michigan State University, East Lansing, USA.

    Google Scholar 

  • Zahran H.H. (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate, Microbiol. Molec. Biol. Rev. 63, 968–989.

    CAS  Google Scholar 

  • Zaman-Allah M., Sifi B., L’taief M., El aouni H., Drevon J.J. (2007) Rhizobial inoculation and P fertilization response in common bean (Phaseolus vulgaris) under glasshouse and field conditions, Exp. Agric. 43, 67–77.

    Article  CAS  Google Scholar 

  • Zengeni R., Giller K.E. (2007) Effectiveness of indigenous soybean rhizobial isolates to fix nitrogen under field conditions of Zimbabwe, Symbiosis 43, 129–135.

    CAS  Google Scholar 

  • Zhu Y., Sheaffer C.C., Vance C.P., Graham P.H., Russelle M.P., Montealegre C.M. (1998) Inoculation and nitrogen affect herbage and symbiotic properties of annual Medicago species, Agron. J. 90, 781–786.

    Article  Google Scholar 

  • Zotarelli L., Resende A., Torres E., Hungria M., Urquiaga S., Boddey R.M., Alves B.J.R. (1998) O papel da soja para as reservas de N de um Latossolo Roxo sob plantio directo na regiao de Londrina, PR, in: Reuniao Brasileira de Fertilidade do Solo e Nutricao de Plantas, 23, Lavras.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas. N. Chianu.

About this article

Cite this article

Chianu, J.N., Nkonya, E.M., Mairura, F.S. et al. Biological nitrogen fixation and socioeconomic factors for legume production in sub-Saharan Africa: a review. Agronomy Sust. Developm. 31, 139–154 (2011). https://doi.org/10.1051/agro/2010004

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro/2010004

Keywords

Navigation