Skip to main content
  • Original Article
  • Published:

13C and 15N isotopic fractionation in trees, soils and fungi in a natural forest stand and a Norway spruce plantation

Fractionnement isotopique 13C et 15N dans les arbres, le sol et les champignons pour un peuplement de forêt naturelle et une plantation d’épicéas

Abstract

15N and 13C natural abundances of foliage, branches, trunks, litter, soil, fungal sporophores, mycorrhizas and mycelium were determined in two forest stands, a natural forest and a Norway spruce plantation, to obtain some insights into the role of the functional diversity of saprotrophic and ectomycorrhizal fungi in carbon and nitrogen cycles. Almost all saprotrophic fungi sporophores were enriched in 13C relative to their substrate. In contrast, they exhibited no or very little shift of δ15N. Judging from the amount of C discrimination, ectomycorrhizal fungi seem to acquire carbon from their host or from dead organic matter. Some ectomycorrhizal species seem able to acquire nitrogen from dead organic matter and could be able to transfer it to their host without nitrogen fractionation, while others supply their host with 15N-depleted nitrogen. Moreover ectomycorrhizal species displayed a significant N fractionation during sporophore differentiation, while saprotrophic fungi did not.

Résumé

Les abondances naturelles du 15N et du 13C de la masse foliaire, des branches, des troncs, de la litière, du sol, des carpophores, des mycorhizes et du mycélium, ont été déterminées dans deux peuplements forestiers, une forêt naturelle et une plantation d’épicéas, afin d’obtenir quelques précisions sur le rôle de la diversité fonctionnelle des champignons saprophytes et ectomycorhiziens dans le cycle du carbone et de l’azote. Presque tous les champignons saprophytes présentent un enrichissement en 13C relativement à leur substrat. Par contre, ils ne présentent pas ou ne présentent que très peu de modifications du δ15N. En fonction de leur taux de discrimination du carbone, les champignons ectomycorhiziens semblent pouvoir acquérir du carbone à la fois à partir de leur hôte et de la matière organique morte. Quelques espèces semblent capables d’acquérir de l’azote organique du sol et de le transférer sans fractionnement à leur hôte alors que d’autres fournissent leur hôte en azote appauvri en 15N. De plus, les espèces ectomycorhiziennes présentent un fractionnement significatif de l’azote pendant la différentiation des carpophores, alors que les champignons saprophytes n’en présentent pas.

References

  1. Abuzinadah R.A., Read D.J., The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi, New Phytol. 103 (1986) 481–493.

    Article  CAS  Google Scholar 

  2. Abuzinadah R.A., Read D.J., The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. IV. The utilization of peptides by birch (Betula pendula), New Phytol. 112 (1989) 55–60.

    Article  CAS  Google Scholar 

  3. Baize D., Girard M.C. (Eds.), Référentiel pédologique, Éditions INRA, Paris, 1995.

    Google Scholar 

  4. Bardin R., Domenach A.M., Chalamet A., Rapports isotopiques naturels de l’azote. II. Variations d’abondance du 15N dans les échantillons de sols et de plants; applications, Rev. Écol. Biol. Sol 14 (1977) 395–402.

    CAS  Google Scholar 

  5. Bending G.D., Litter decomposition, ectomycorrhizal roots and the ‘Gadgil’ effect, New Phytol. 158 (2003) 228–229.

    Article  Google Scholar 

  6. Chalot M., Brun A., Botton B., Occurrence and distribution of the fungal NADP-dependent glutamate dehydrogenase in spruce and beech ectomycorrhizas, in: Werner D., Müller P. (Eds.), Fast growing trees and nitrogen fixing trees, Gustav Fischer, New York, 1989, pp. 324–327

    Google Scholar 

  7. Colpaert J.V., van Tichelen K.K., Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ectomycorrhizal or litter-decomposing basidiomycetes, New Phytol. 134 (1996) 123–132.

    Article  Google Scholar 

  8. Courty P.E., Pritsch K., Schloter M., Hartmann A., Garbaye J., Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests, New Phytol. 167 (2005) 309–319.

    Article  PubMed  CAS  Google Scholar 

  9. Courtecuisse R., Mushrooms of Britain and Europe, Harper Collins, London, 2000.

    Google Scholar 

  10. Dell B., Botton B., Martin F., Le Tacon F., Glutamate dehydrogenase in ectomycorrhizas of spruce (Picea excelsa L.) and beech (Fagus sylvatica L.), New Phytol. 111 (1989) 683–692.

    Article  CAS  Google Scholar 

  11. Durrieu G., Écologie des champignons, Masson, Paris, 1993.

  12. Emmerton K.S., Callaghan T.V., Jones H.E., Leake J.R., Michelsen A., Read D.J., Assimilation and isotopic fractionation of nitrogen by mycorrhizal fungi, New Phytol. 151 (2001) 503–511.

    Article  CAS  Google Scholar 

  13. Emmerton K.S., Callaghan T.V., Jones H.E., Leake J.R., Michelsen A., Read D.J., Assimilation and isotopic fractionation of nitrogen by mycorrhizal and nonmycorrhizal subarctic plants, New Phytol. 151 (2001) 513–524.

    Article  CAS  Google Scholar 

  14. Finlay R.D., Ek H., Odham G., Söderström B., Mycelium uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi, New Phytol. 110 (1988) 59–66.

    Article  Google Scholar 

  15. Gadgil R.L., Gadgil P.D., Mycorrhiza and litter decomposition, Nature 233 (1971) 133.

    Article  PubMed  CAS  Google Scholar 

  16. Gadgil R.L., Gadgil P.D., Suppression of litter decomposition by mycorrhizal roots of Pinus radiata, N. Z. J. For. Sci. 5 (1975) 33–41.

    Google Scholar 

  17. Gebauer G., Dietrich P., Nitrogen isotope ratios in different compartments of a mixed stand of spruce, larch and beech trees and of understorey vegetation including fungi, Isotopenpraxis 29 (1993) 35–44.

    Article  CAS  Google Scholar 

  18. Gebauer G., Taylor A.F.S., 15N natural abundance in fruit bodies of different functional groups of fungi in relation to substrate utilization, New Phytol. 142 (1999) 93–101.

    Article  Google Scholar 

  19. Handley L.L., Daft M.J., Wilson J., Scrimgeour C.M., Ingleby K., Sattar M.A., Effects of the ectomycorrhizal and VA mycorrhizal fungi Hydnangium carneum and Glomus clarum on the delta-N-15 and delta-C-13 Values of Eucalyptus globulus and Ricinus communis, Plant Cell Environ. 16 (1993) 375–382.

    Article  CAS  Google Scholar 

  20. Handley L.L., Brendel O., Scrimgeour C.M., Schmidt S., Raven J.A., Turnbull M.H., Stewart G.R., The 15N natural abundance patterns of field-collected fungi from three kinds of ecosystems, Rapid Comm. Mass Spectrom. 10 (1996) 974–978.

    Article  CAS  Google Scholar 

  21. Harley J.L., Ectomycorrhizas as nutrient absorbing organs, Proc. R. Soc. Lond. B 203 (1978) 1–21.

    Article  PubMed  CAS  Google Scholar 

  22. Henn M.R., Chapela I.H., Differential C isotope discrimination by fungi during decomposition of C3 — and C4 — derived sucrose, Appl. Environ. Microbiol. 66 (2000) 4180–4186.

    Article  PubMed  CAS  Google Scholar 

  23. Henn M.R., Chapela I.H., Ecophysiology of 13C and 15N isotopic fractionation in forest fungi and the roots of the saprotrophicmycorrhizal divide, Oecologia 128 (2001) 480–487.

    Article  Google Scholar 

  24. Henn M.R., Gleixner G., Chapela I.H., Growth-dependent stable carbon isotope fractionation by basidiomycete fungi: 13C pattern and physiological process, Appl. Environ. Microbiol. 68 10 (2002) 4956–4964.

    Article  PubMed  CAS  Google Scholar 

  25. Hietz P., Wanek W., Wania R., Nadkarni N.M., Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition, Oecologia 131 (2002) 350–355.

    Article  Google Scholar 

  26. Hobbie E.A., Macko S.A., Shugart H., Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence, Oecologia 118 (1999) 353–360.

    Article  Google Scholar 

  27. Hobbie E.A., Weber N.S., Trappe J.M., Mycorrhizal vs. saprophytic status of fungi: the isotopic evidence, New Phytol. 150 (2001) 601–610.

    Article  CAS  Google Scholar 

  28. Hobbie E.A., Weber N.S., Trappe J.M., Van Klinken G.J., Using radiocarbon to determine the mycorrhizal status of fungi, New Phytol. 156 (2002) 129–136.

    Article  Google Scholar 

  29. Hobbie E.A., Colpaert J.V., Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants, New Phytol. 157 (2003) 115–126.

    Article  CAS  Google Scholar 

  30. Hobbie E.A., Colpaert J.V., Nitrogen availability and mycorrhizal colonization influence water use efficiency and carbon isotope patterns in Pinus sylvestris, New Phytol. 164 (2004) 515–525.

    Article  Google Scholar 

  31. Hobbie E.A., Sanchez F.S., Rygiewicz P.T., Carbon use, nitrogen use, and isotopic fractionation of ectomycorrhizal and saprotrophic fungi in natural abundance and 13C-labelled cultures, Mycol. Res. 108 (2004) 725–736.

    Article  PubMed  CAS  Google Scholar 

  32. Hobbie E.A., Jumpponen A., Trappe J.M., Foliar and fungal 15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models, Oecologia 146 (2005) 258–268.

    Article  PubMed  Google Scholar 

  33. Hobbie E.A., Using isotopic tracers to follow carbon and nitrogen cycling in fungi, in: Dighton J., Oudemans P., White J. (Eds.), The fungal community: Its organization and role in the ecosystem, CRC Press, London, 2005, pp. 361–381.

    Chapter  Google Scholar 

  34. Hobbie E.A., Assessing functions of soil microbes with isotopic measurements, in: Buscot F., Varna A. (Eds.), Micro-organisms in Soils: Roles in genesis and Functions. Springer, Heidelberg, 2005, pp. 383–402.

    Chapter  Google Scholar 

  35. Hobbie J.E., Hobbie E.A., 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra, Ecology 87 (2006) 816–822.

    Article  PubMed  Google Scholar 

  36. Högberg P., Högbom L., Schinkel H., Högberg M., Johannisson C., Wallmark H., 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils, Oecologia 108 (1996) 207–214.

    Google Scholar 

  37. Högberg P., 15N natural abundance in soil-plant systems, New Phytol. 137 (1997) 179–203.

    Article  Google Scholar 

  38. Högberg P., Plamboeck A.H., Taylor A.F.S., Fransson P.M.A., Natural 13C abundance reveals trophic status of fungi and hostorigin of carbon in mycorrhizal fungi in mixed forest, Proc. Natl. Acad. Sci. USA 96 (1999) 8534–8539.

    Article  PubMed  Google Scholar 

  39. Jabiol B., Brêthes A., Ponge J.F., Toutain F., Brun J.J., L’humus sous toutes ses formes, Edition ENGREF, Nancy, 1995.

    Google Scholar 

  40. Kendall C., Mcdonnell J.J., Isotope tracers in catchment hydrology, Elsevier, Amsterdam, 1998.

    Google Scholar 

  41. Kohzu A., Yoshioka T., Ando T., Takahashi M., Koba K., Wada W., Natural 13C and 15N abundance of field-collected fungi and their ecological implications, New Phytol. 144 (1999) 323–330.

    Article  Google Scholar 

  42. Kohzu A., Tateishi T., Yamada A., Koba K., Wada E., Nitrogen isotope fractionation during nitrogen transport from ectomycorrhizal fungi, Suillus granulatus, to the host plant, Pinus densiflora, J. Soil Sci. Plant Nutr. 46 3 (2000) 733–739.

    Google Scholar 

  43. Koide R.T., Wu T., Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation, New Phytol. 158 (2003) 401–408.

    Article  Google Scholar 

  44. Lilleskov E.A., Hobbie E.A., Fahey T.J., Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes, New Phytol. 154 (2002) 219–231.

    Article  CAS  Google Scholar 

  45. Lindahl B.O., Taylor A.F.S., Finlay R.D., Defining nutritional constraints on carbon cycling in boreal forests — towards a less ‘phytocentric’ perspective, Plant Soil 242 (2002) 123–135.

    Article  CAS  Google Scholar 

  46. Mariotti A., Mariotti F., Amarger N., Pizelle G., Ngambi J.M., Champigny M.L., Moyse A., Fractionnement isotopiques de l’azote lors des processus d’absorption des nitrates et de fixation de l’azote atmosphérique par les plants, Physiol. veg. 18 (1980) 163–181.

    CAS  Google Scholar 

  47. Martin F., Stewart G.R., Genetet I., Le Tacon F., Assimilation of 15NH +4 by beech (Fagus sylvatica L.) ectomycorrhizas, New Phytol. 102 (1986) 85–94.

    Article  CAS  Google Scholar 

  48. Martin F., Stewart G.R., Genetet I., Mourot B., The involvement of glutamate dehydrogenase and glutamine synthetase in ammonia assimilation by the rapidly growing ectomycorrhizal ascomycete Cenococcum geophilum Fr., New Phytol. 110, (1988) 541–550.

    Article  CAS  Google Scholar 

  49. Martin F., Lorillou S., Nitrogen acquisition and assimilation in ectomycorrhizal systems, in: Rennenberg H., Eschrich W., Ziegler H. (Eds.), Trees — contribution to modern tree physiology, Backhuys Publishers, Leiden, 1997, pp. 423–439

    Google Scholar 

  50. Melin E., Nilsson H., Transport of labelled nitrogen from an ammonium source to pine seedlings through mycorrhizal mycelium, Svensk Botanisk Tidskrift 46 (1952) 281–285.

    CAS  Google Scholar 

  51. Perez-Moreno J., Read D.J., Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants, New Phytol. 145 (2000) 301–309.

    Article  CAS  Google Scholar 

  52. Richards B.N., The microbiology of terrestrial ecosystems, Longman Scientific & Technical, John Wiley & Sons, Inc., New York, 1987.

    Google Scholar 

  53. Robinson C.H., Controls on decomposition and soil nitrogen availability at high latitudes, Plant Soil 242 (2002) 65–81.

    Article  CAS  Google Scholar 

  54. Smith S.E., Read D.J., Mycorrhizal Symbiosis, 2nd ed., Academic Press, Harcourt Brace and Co., London, 1997.

    Google Scholar 

  55. Taylor A.F.S., Högbom L., Högberg M., Lyon T.E.J., Näsholm T., Högberg P., Natural 15N abundance in fruit bodies of ectomycorrhizal fungi from boreal forest, New Phytol. 136 (1997) 713–720.

    Article  Google Scholar 

  56. Taylor A.F.S., Fransson P.M., Högberg P., Högberg M., Plamboeck A.H., Species level patterns in 13C and 15N abundance of ectomycorrhizal and saprotrophic fungal sporocarps, New Phytol. 159 (2003) 757–774.

    Article  CAS  Google Scholar 

  57. Trudell S.A., Rygiewicz P.T., Edmonds R.L., Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests, New Phytol. 164, (2004) 317–335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Zeller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeller, B., Brechet, C., Maurice, JP. et al. 13C and 15N isotopic fractionation in trees, soils and fungi in a natural forest stand and a Norway spruce plantation. Ann. For. Sci. 64, 419–429 (2007). https://doi.org/10.1051/forest:2007019

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007019