Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Pneumatically actuated positive gain microvalve with n-channel metal-oxide semiconductor-like behaviour

Pneumatically actuated positive gain microvalve with n-channel metal-oxide semiconductor-like behaviour

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This Letter presents the design, fabrication and experimental characterisation of a pneumatically actuated positive gain microvalve fabricated using SU-8 and gold over a printed circuit board substrate. The experimental results show that this microvalve has a n-channel metal-oxide semiconductor (NMOS)-like function in fluidic channel networks, with a maximum positive gain of 90 mL/(min·bar) and flow regulation of air from 3 to 40 mL/min for a working pressure of 10 mbar. The device has linear and saturation regions as p-channel microfluidic transistors. In addition, a new region named shock zone is obtained experimentally together with the rest, using air both as actuation and control fluid. The new shock zone corresponds to the breakdown region in microelectronic NMOS transistors. The proposed microvalve working as NMOS microfluidic transistor completes the field of transistors regarding the kind of channel. Furthermore, the device can be used as an active device in fluidics circuits and completes both the possibilities of flow control and microfluidic circuits design.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2011.0150
Loading

Related content

content/journals/10.1049/mnl.2011.0150
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address