Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Diagnostic aspects of partial discharge measurement at very low frequency: a review

Electrical insulation of high voltage (HV) power equipment/apparatus plays very important roles in the sound functioning of power systems. Examining the insulation condition through partial discharge (PD) measurements has considerable importance as the presence of PDs in any HV systems stands for a sign of defects and degradations in electrical insulation. Generally, the PD measurements are performed with a supply voltage of normal power frequency (PF-50/60 Hz). As an attractive alternative, the PD measurement with a very low frequency (VLF–1 Hz or lower) applied voltage has emerged as a powerful diagnostic tool. A PD event is a random physical process, it depends mostly on the availability of free electrons that triggers the PD and the presence of space charge usually originated after a discharge. As the discharge characteristics vary with the supply voltage frequency; thus, the existing interpretation knowledge at 50 Hz may or may not be directly applicable to other test frequencies, particularly in the VLF range. Therefore, to provide a general insight, this paper presents various diagnostic aspects of PD measurements, and at the end, various discharge sources (e.g., void, surface, and corona) and their behaviours under varying the test voltage frequencies are discussed in detail.

References

    1. 1)
      • 44. Wu, K., Okamoto, T., Suzuoki, Y.: ‘Effects of discharge area and surface conductivity on partial discharge behavior in voids under square voltages’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (2), pp. 461470.
    2. 2)
      • 21. Nyamupangedengu, C., Jandrell, I.R.: ‘Influence of supply voltage frequency and magnitude on PD pulse parameters’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (6), pp. 15901600.
    3. 3)
      • 32. Molinie, P.: ‘Measuring and modeling transient insulator response to charging: the contribution of surface potential studies’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (5), pp. 939950.
    4. 4)
      • 31. Morsalin, S., Phung, B.T.: ‘Comparative phase-resolved analysis of AC corona discharges at very low (0.1 Hz) and power frequencies’. Int. Conf. on High Voltage Engineering and Power Systems (ICHVEPS), Denpasar, Bali, Indonesia, 2017, pp. 15.
    5. 5)
      • 17. Illias, H., Chen, G., Lewin, P.L.: ‘Partial discharge behavior within a spherical cavity in a solid dielectric material as a function of frequency and amplitude of the applied voltage’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (2), pp. 432443.
    6. 6)
      • 47. Cavallini, A., Fabiani, D., Montanari, G.C.: ‘Power electronics and electrical insulation systems – part 2: life modeling for insulation design’, IEEE Electr. Insul. Mag., 2010, 26, (4), pp. 3339.
    7. 7)
      • 46. Seeger, M., Bujotzek, M., Niemeyer, L.: ‘Formative time lag and breakdown in SF6 at small protrusions’. 17th Int. Conf. on Gas Discharges and Their Applications (ICGDA), Edmonton, Canada, 2008, pp. 317320.
    8. 8)
      • 3. Hvidsten, S., Holmgren, B., Adeen, L., et al: ‘Condition assessment of 12- and 24-kV XLPE cables installed during the 80 s. Results from a joint Norwegian/Swedish research project’, IEEE Electr. Insul. Mag., 2005, 21, (6), pp. 1723.
    9. 9)
      • 111. Morsalin, S., Phung, T.: ‘Electrical field distribution on the cross-linked polyethylene insulation surface under partial discharge testing’, Polym. Test., 2020, 4, (3), pp. 137.
    10. 10)
      • 9. Cavallini, A., Montanari, G.C.: ‘Effect of supply voltage frequency on testing of insulation system’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (1), pp. 111121.
    11. 11)
      • 7. Montanari, G.C., Seri, P., Cirioni, L.: ‘Measuring partial discharges in DC insulation systems. A challenge, but also a must’. 12th Int. Conf. on the Properties and Applications of Dielectric Materials (ICPADM), Xi'an, People's Republic of China, 2018, pp. 128131.
    12. 12)
      • 94. Mondal, M., Kumbhar, G.B.: ‘Detection, measurement, and classification of partial discharge in a power transformer: methods, trends, and future research’, IETE Tech. Rev., 2018, 35, (5), pp. 483493.
    13. 13)
      • 33. Cavallini, A., Ciani, F., Mazzanti, G., et al: ‘First electron availability and partial discharge generation in insulation cavities: effect of light irradiation’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (2), pp. 387394.
    14. 14)
      • 1. Hauschild, W.: ‘Critical review of voltages for quality-acceptance and diagnostic field tests on high-voltage and extra-high-voltage cable systems’, IEEE Electr. Insul. Mag., 2013, 29, (2), pp. 1625.
    15. 15)
      • 69. Liu, T., Li, Q., Huang, X., et al: ‘Partial discharge behavior and ground insulation life expectancy under different voltage frequencies’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (2), pp. 603613.
    16. 16)
      • 41. Pedersen, A., Crichton, G.C., McAllister, I.W.: ‘The functional relation between partial discharges and induced charge’, IEEE Trans. Dielectr. Electr. Insul., 1995, 2, (4), pp. 535543.
    17. 17)
      • 59. Cavallini, A., Montanari, G.C., Puletti, F., et al: ‘A new methodology for the identification of PD in electrical apparatus: properties and applications’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (2), pp. 203215.
    18. 18)
      • 2. James, R.E., Su, Q.: ‘Condition assessment of high voltage insulation in power system equipment’ (IET Press, UK, 2008).
    19. 19)
      • 76. Nazemi, M.H., Hinrichsen, V.: ‘Experimental investigations on partial discharge characteristics of water droplets on polymeric insulating surfaces at AC, DC and combined AC-DC voltages’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (4), pp. 22612270.
    20. 20)
      • 60. Illias, H.A., Chen, G., Lewin, P.L.: ‘Partial discharge measurements for spherical cavities within solid dielectric materials under different stress and cavity conditions’. IEEE Int. Conf. on Electrical Insulation and Dielectric Phenomena (CEIDP), Gdansk, Poland, 2009, pp. 388391.
    21. 21)
      • 25. Wester, F.J., Guilski, E., Smit, J.J.: ‘Detection of partial discharges at different AC voltage stresses in power cables’, IEEE Electr. Insul. Mag., 2007, 23, (4), pp. 2843.
    22. 22)
      • 22. Wang, L., Cavallini, A., Montanari, G.C., et al: ‘Evolution of PD patterns in polyethylene insulation cavities under AC voltage’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (2), pp. 533542.
    23. 23)
      • 81. Mraz, P., Treyer, P., Hammer, U.: ‘Evaluation and limitations of corona discharge measurements – an application point of view’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), Xi'an, People's Republic of China, 2016, pp. 273276.
    24. 24)
      • 97. Fabiani, D., Montanari, G.C., Cavallini, A., et al: ‘Relation between space charge accumulation and partial discharge activity in enameled wires under PWM-like voltage waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (3), pp. 393405.
    25. 25)
      • 19. Nguyen, H.V.P., Phung, B.T., Blackburn, T.: ‘Effect of temperatures on very low frequency partial discharge diagnostics’. IEEE 11th Int. Conf. on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, Australia, 2015, pp. 272275.
    26. 26)
      • 67. Gouda, O., ElFaraskoury, A., ElSinary, A., et al: ‘Investigating the effect of frequency and wave shape of voltage source on partial discharge behaviour within cavity in medium voltage cable’. 19th Int. Middle East Power Systems Conf. (MEPCON), Al Minufya, Egypt, 2017, pp. 10931099.
    27. 27)
      • 70. Dabbak, S.Z., Illias, H.A., Ang, B.C.: ‘Effect of surface discharges on different polymer dielectric materials under high field stress’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (6), pp. 37583765.
    28. 28)
      • 79. Ray, S.: ‘An introduction to high voltage engineering’ (PHI Learning Pvt. Ltd., India, 2013).
    29. 29)
      • 14. Kuffel, J., Kuffel, P.: ‘High voltage engineering fundamentals’ (Elsevier Press, UK, 2000, 2nd edn.).
    30. 30)
      • 71. Wang, X., Taylor, N., Edin, H.: ‘Enhanced distinction of surface and cavity discharges by trapezoid based arbitrary voltage waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (1), pp. 435443.
    31. 31)
      • 10. Krotov, V., Cavallini, A.: ‘Comparison of PD patterns at power and very low frequency: is diagnostic possible?’. IEEE Int. Conf. on Solid Dielectrics (ICSD), Bologna, Italy, 2013, pp. 109112.
    32. 32)
      • 56. Forssen, C., Edin, H.: ‘Modeling partial discharges in a cavity at different applied frequencies’. IEEE Int. Conf. on Electrical Insulation and Dielectric Phenomena (CEIDP), Winchester, UK, 2007, pp. 132135.
    33. 33)
      • 112. Morsalin, S., Sahoo, A., Phung, B.T.: ‘Diagnostic testing of power cable insulation for reliable smart grid operation’. IEEE Electrical Insulation Conf., EIC, Calgary, Canada, 2019, pp. 14.
    34. 34)
      • 107. Schwarz, R., Muhr, M.: ‘Modern technologies in optical partial discharge detection’. Annual Report – Conf. on Electrical Insulation and Dielectric Phenomena, Vancouver, Canada, 2007, pp. 163166.
    35. 35)
      • 27. Cavallini, A., Krotov, V., Montanari, G.C., et al: ‘The role of supply frequency in the evaluation of partial discharge inception voltage in XLPE-embedded cavities’. IEEE Int. Conf. on Electrical Insulation and Dielectric Phenomena (CEIDP), Montreal, Canada, 2012, pp. 487490.
    36. 36)
      • 109. Morsalin, S., Phung, B.T., Cavallini, A.: ‘Measurement and modeling of partial discharge arising from different cavity geometries at very low frequency’, IEEE Trans. Dielectr. Electr. Insul., 2020, 27, pp. 11101118.
    37. 37)
      • 54. Illias, H.A., Chen, G., Lewin, P.L.: ‘Modelling of temporal temperature and pressure change due to partial discharge events within a spherical cavity in a solid dielectric material using finite element analysis’. Int. Conf. on High Voltage Engineering and Application (ICHVE), New Orleans, LA, USA, 2010, pp. 501504.
    38. 38)
      • 36. Gutfleisch, F., Niemeyer, L.: ‘Measurement and simulation of PD in epoxy voids’, IEEE Trans. Dielectr. Electr. Insul., 1995, 2, (5), pp. 729743.
    39. 39)
      • 8. Fynes-Clinton, D., Nyamupangedengu, C.: ‘Partial discharge characterization of cross-linked polyethylene medium voltage power cable termination defects at very low frequency (0.1 Hz) and power frequency test voltages’, IEEE Electr. Insul. Mag., 2016, 32, (4), pp. 1523.
    40. 40)
      • 57. Nyamupangedengu, C., Jandrell, I.R.: ‘Partial discharge spectral response to variations in the supply voltage frequency’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (2), pp. 521532.
    41. 41)
      • 106. Li, J., Jiang, T., Cheng, C., et al: ‘Hilbert fractal antenna for UHF detection of partial discharges in transformers’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (6), pp. 20172025.
    42. 42)
      • 62. Illias, H., Chen, G., Lewin, P.L.: ‘Modeling of partial discharge activity in spherical cavities within a dielectric material’, IEEE Electr. Insul. Mag., 2011, 27, (1), pp. 3845.
    43. 43)
      • 37. Crichton, G.C., Karlsson, P.W., Pedersen, A.: ‘Partial discharges in ellipsoidal and spheroidal voids’, IEEE Trans. Electr. Insul., 1989, 24, (2), pp. 335342.
    44. 44)
      • 92. Rezinkina, M., Rezinkin, O., D'Alessandro, F., et al: ‘Experimental and modelling study of the dependence of corona discharge on electrode geometry and ambient electric field’, J. Electrostat., 2017, 87, pp. 7985.
    45. 45)
      • 49. Dodd, S.J., Champion, J.V, Zhao, Y., et al: ‘Influence of morphology on electrical treeing in polyethylene blends’, IET Sci. Meas. Technol., 2003, 150, (2), pp. 5864.
    46. 46)
      • 29. Niemeyer, L.: ‘A generalized approach to partial discharge modeling’, IEEE Trans. Dielectr. Electr. Insul., 1995, 2, (4), pp. 510528.
    47. 47)
      • 26. Nguyen, H.V.P., Phung, B.T.: ‘Void discharge behaviours as a function of cavity size and voltage waveform under very low-frequency excitation’, High Volt., 2018, 3, (2), pp. 96102.
    48. 48)
      • 82. Harjo, S., Mizutani, T.: ‘Diagnosis of insulation conditions: interpretation of partial discharges from φ-q-n pattern, pulse-sequence and pulse waveform’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), Beijing, People's Republic of China, 2008, pp. 6063.
    49. 49)
      • 51. Nyanteh, Y., Graber, L., Edrington, C., et al: ‘Overview of simulation models for partial discharge and electrical treeing to determine feasibility for estimation of remaining life of machine insulation systems’. Electrical Insulation Conf. (EIC), Annapolis, MD, USA, 2011, pp. 327332.
    50. 50)
      • 24. Bodega, R., Morshuis, P.H.F., Lazzaroni, M., et al: ‘PD recurrence in cavities at different energizing methods’, IEEE Trans. Instrum. Meas., 2004, 53, (2), pp. 251258.
    51. 51)
      • 20. Nguyen, H.V.P., Phung, B.T., Blackburn, T.: ‘Effects of ambient conditions on partial discharges at very low frequency (VLF) sinusoidal voltage excitation’. IEEE Electrical Insulation Conf. (EIC), Seattle, WA, USA, 2015, pp. 266269.
    52. 52)
      • 28. Nguyen, H.V.P., Phung, B.T., Morsalin, S.: ‘Modelling partial discharges in an insulation material at very low frequency’. Int. Conf. on High Voltage Engineering and Power Systems (ICHVEPS), Denpasar, Bali, Indonesia, 2017, pp. 15.
    53. 53)
      • 73. Rethmeier, K., Blank, R.: ‘Partial discharge measurements in the sub-VLF-range’. 9th Int. Conf. on Insulated Power Cables (ICIPC), Versailles, France, 2015, pp. 16.
    54. 54)
      • 102. Boczar, T.: ‘Identification of a specific type of PD from acoustic emission frequency spectra’, IEEE Trans. Dielectr. Electr. Insul., 2001, 8, (4), pp. 598606.
    55. 55)
      • 43. Hudon, C., Bartnikas, R., Wertheimer, M.R.: ‘Surface conductivity of epoxy specimens subjected to partial discharges’. IEEE Int. Symp. on Electrical Insulation (ISEI), Toronto, Canada, 1990, pp. 153155.
    56. 56)
      • 101. Biswas, S., Dey, D., Chatterjee, B., et al: ‘Cross-spectrum analysis based methodology for discrimination and localization of partial discharge sources using acoustic sensors’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (6), pp. 35563565.
    57. 57)
      • 80. Dao, T., Phung, B.T., Blackburn, T., et al: ‘A comparative study of partial discharges under power and very low frequency voltage excitation’. IEEE Int. Conf. on Electrical Insulation and Dielectric Phenomena (CEIDP), Des Moines, IA, USA, 2014, pp. 164167.
    58. 58)
      • 11. Peschel, M.T.: ‘Needed changes in medium voltage cable testing. Were you in on it? Welcome to the world of VLF’. IEEE Int. Symp. on Electrical Insulation, San Diego, CA, USA, 2010, pp. 15.
    59. 59)
      • 16. IEC 60270 Std.: ‘Partial discharge measurements’, 2013.
    60. 60)
      • 23. Forssen, C., Edin, H.: ‘Partial discharges in a cavity at variable applied frequency part 1: measurements’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (6), pp. 16011609.
    61. 61)
      • 89. Biswas, S., Dey, D., Chatterjee, B., et al: ‘An approach based on rough set theory for identification of single and multiple partial discharge source’, Int. J. Electr. Power Energy Syst., 2013, 46, pp. 163174.
    62. 62)
      • 39. Achillides, Z., Georghiou, G.E., Kyriakides, E.: ‘Partial discharges and associated transients: the induced charge concept versus capacitive modeling’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (6), pp. 15071516.
    63. 63)
      • 93. Florkowska, B., Wlodek, R.: ‘Pulse height analysis of partial discharges in air’, IEEE Trans. Electr. Insul., 1993, 28, (6), pp. 932940.
    64. 64)
      • 30. Miller, R., Black, I.A.: ‘Partial discharge measurements over the frequency range 0.1 Hz to 50 Hz’, IEEE Trans. Electr. Insul., 1977, 12, (3), pp. 224233.
    65. 65)
      • 103. Coenen, S., Tenbohlen, S., Markalous, S.M., et al: ‘Sensitivity of UHF PD measurements in power transformers’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (6), pp. 15531558.
    66. 66)
      • 86. Florkowska, B., Florkowski, M., Roehrich, J., et al: ‘Partial discharge mechanism in a non-uniform electric field at higher pressure’, IET Sci. Meas. Technol., 2011, 5, (2), pp. 5966.
    67. 67)
      • 85. Radu, I., Bartnikas, R., Wertheimer, M.R.: ‘Frequency and voltage dependence of glow and pseudoglow discharges in helium under atmospheric pressure’, IEEE Trans. Plasma Sci., 2003, 31, (6), pp. 13631378.
    68. 68)
      • 15. Feng, X., Xiong, Q., Gattozzi, A., et al: ‘Cable commissioning and diagnostic tests: the effect of voltage supply frequency on partial discharge behavior’. 12th Int. Conf. on the Properties and Applications of Dielectric Materials (ICPADM), Xi'an, People's Republic of China, 2018, pp. 373376.
    69. 69)
      • 6. Hauschild, W., Lemke, E.: ‘High-voltage test and measuring techniques’ (Springer, Germany, 2014).
    70. 70)
      • 96. Stone, G.C., Sedding, H.G., Fujimoto, N., et al: ‘Practical implementation of ultrawideband partial discharge detectors’, IEEE Trans. Electr. Insul., 1992, 27, (1), pp. 7081.
    71. 71)
      • 58. Cavallini, A., Montanari, G.C., Mariut, L.E.: ‘The influence of test voltage waveforms on partial discharge activity in XLPE’. IEEE Int. Symp. on Electrical Insulation (ISEI), San Juan, Puerto Rico, USA, 2012, pp. 554557.
    72. 72)
      • 100. Lundgaard, L.E.: ‘Partial discharge. XIII. Acoustic partial discharge detection-fundamental considerations’, IEEE Electr. Insul. Mag., 1992, 8, (4), pp. 2531.
    73. 73)
      • 87. Esfahani, A.N., Shahabi, S., Stone, G., et al: ‘Investigation of corona partial discharge characteristics under variable frequency and air pressure’. IEEE Electrical Insulation Conf. (EIC), San Antonio, TX, USA, 2018, pp. 3134.
    74. 74)
      • 75. Chidzikwe, C., Nyamupangedengu, S., Chimunda, C.: ‘A comparative study of surface partial discharge parameters at very low frequency (VLF) and power frequency test voltages’. 22nd South African Universities Power Engineering Conf. (SAPEC), Potchefstroom, South Africa, 2016, pp. 16.
    75. 75)
      • 74. Martinez-Tarifa, J.M., Cavallini, A., Montanari, G.C., et al: ‘Surface degradation on XLPE under PD activity’. IEEE Int. Conf. on Electrical Insulation and Dielectric Phenomena (CEIDP), Gdansk, Poland, 2009, pp. 417420.
    76. 76)
      • 78. Zhang, C.H., MacAlpine, J.M.K.: ‘A phase-related investigation of AC corona in air’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (2), pp. 312319.
    77. 77)
      • 72. Goetz, D., Putter, H., Petzold, F., et al: ‘PD characteristics under the aspect of different voltage wave shapes and frequencies’. Int. Conf. on Diagnostic of Electrical Machines and Insulating Systems in Electrical Engineering (DEMISEE), Papradno, Slovakia, 2016, pp. 9498.
    78. 78)
      • 61. Illias, H.A., Chen, G., Lewin, P.L.: ‘Comparison of partial discharge measurement and simulation results for spherical cavities within solid dielectric materials as a function of frequency using finite element analysis method’. IEEE Int. Symp. on Electrical Insulation (ISEI), San Diego, CA, USA, 2010, pp. 15.
    79. 79)
      • 5. Dissado, L.A., Fothergill, J.C.: ‘Electrical degradation and breakdown in polymers’ (IET Press, UK, 1992).
    80. 80)
      • 66. Saadati, H., Werle, P., Seifert, J.M., et al: ‘Fundamental difference of partial discharge phenomena under AC and DC stresses’. IEEE Int. Conf. on High Voltage Engineering and Application (ICHVE), Athens, Greece, 2018, pp. 14.
    81. 81)
      • 40. Danikas, M.G., McAllister, I.W., Crichton, G.C., et al: ‘Discussion: partial discharges in ellipsoidal and spheroidal voids’, IEEE Trans. Electr. Insul., 1991, 26, (3), pp. 537539.
    82. 82)
      • 88. Ganguly, B., Chaudhury, S., Biswas, S., et al: ‘Wavelet kernel-based convolutional neural network for localization of partial discharge sources within a power apparatus’, IEEE Trans. Ind. Inf., 2020, 17, pp. 18311841.
    83. 83)
      • 84. Nair, R.P., Rao, B.N., Sumangala, B.V: ‘Study of corona with and without barrier at 0.1 and 50 Hz frequency sinusoidal voltage excitation’. 3rd Int. Conf. on Condition Assessment Techniques in Electrical Systems (CATCON), Rupnagar, India, 2017, pp. 156160.
    84. 84)
      • 12. Shahsavarian, T., Shahrtash, S.M.: ‘Modelling of aged cavities for partial discharge in power cable insulation’, IET Sci. Meas. Technol., 2015, 9, (6), pp. 661670.
    85. 85)
      • 4. Montanari, G.C., Cavallini, A.: ‘Partial discharge diagnostics: from apparatus monitoring to smart grid assessment’, IEEE Electr. Insul. Mag., 2013, 29, (3), pp. 817.
    86. 86)
      • 35. Morshuis, P.H.F.: ‘Degradation of solid dielectrics due to internal partial discharge: some thoughts on progress made and where to go now’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (5), pp. 905913.
    87. 87)
      • 64. Aldrian, R., Montanari, G.C., Cavallini, A., et alStatistical analysis for internal and surface discharges identification in XLPE insulation under AC voltages’. Int. Conf. on High Voltage Engineering and Power Systems (ICHVEPS), Bali, Indonesia, 2017, pp. 188192.
    88. 88)
      • 50. Lv, Z., Rowland, S.M., Chen, S., et al: ‘Modelling of partial discharge characteristics in electrical tree channels: estimating the PD inception and extinction voltages’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (5), pp. 19992010.
    89. 89)
      • 95. Hikita, M., Okabe, S., Murase, H., et al: ‘Cross-equipment evaluation of partial discharge measurement and diagnosis techniques in electric power apparatus for transmission and distribution’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (2), pp. 505518.
    90. 90)
      • 45. Schifani, R., Candela, R., Romano, P.: ‘On PD mechanisms at high temperature in voids included in an epoxy resin’, IEEE Trans. Dielectr. Electr. Insul., 2001, 8, (4), pp. 589597.
    91. 91)
      • 63. Hao, L., Lewin, P.L.: ‘Partial discharge source discrimination using a support vector machine’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (1), pp. 189197.
    92. 92)
      • 53. Bartnikas, R.: ‘Partial discharges. Their mechanism, detection and measurement’, IEEE Trans. Dielectr. Electr. Insul., 2002, 9, (5), pp. 763808.
    93. 93)
      • 48. Cavallini, A., Fabiani, D., Montanari, G.C.: ‘Power electronics and electrical insulation systems – part 1: phenomenology overview’, IEEE Electr. Insul. Mag., 2010, 26, (3), pp. 715.
    94. 94)
      • 18. Forssen, C., Edin, H.: ‘Partial discharges in a cavity at variable applied frequency part 2: measurements and modeling’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (6), pp. 16101616.
    95. 95)
      • 65. Wan, X., Song, H., Luo, L., et al: ‘Pattern recognition of partial discharge image based on one-dimensional convolutional neural network’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), Perth, Australia, 2018, pp. 14.
    96. 96)
      • 108. Biswas, S., Koley, C., Chatterjee, B., et al: ‘A methodology for identification and localization of partial discharge sources using optical sensors’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (1), pp. 1828.
    97. 97)
      • 105. Judd, M.D., Farish, O., Hampton, B.F.: ‘The excitation of UHF signals by partial discharges in GIS’, IEEE Trans. Dielectr. Electr. Insul., 1996, 3, (2), pp. 213228.
    98. 98)
      • 99. Rubio-Serrano, J., Posada, J., Bua, I., et al: ‘Comparison of processing techniques for optimizing the diagnosis of solid insulation based on acoustic emissions from partial discharges’. IEEE Int. Conf. on Solid Dielectrics (ICSD), Bologna, Italy, 2013, pp. 129132.
    99. 99)
      • 110. Morsalin, S., Phung, B.T., Danikas, M.G.: ‘Influence of cavity geometry on partial discharge measurement at very low frequency’. IEEE Electrical Insulation Conf., EIC, Calgary, Canada, 2019, pp. 14.
    100. 100)
      • 38. Pedersen, A., Crichton, G.C., McAllister, I.W.: ‘The theory and measurement of partial discharge transients’, IEEE Trans. Electr. Insul., 1991, 26, (3), pp. 487497.
    101. 101)
      • 52. Bartnikas, R., Novak, J.P.: ‘On the character of different forms of partial discharge and their related terminologies’, IEEE Trans. Electr. Insul., 1993, 28, (6), pp. 956968.
    102. 102)
      • 34. Illias, H., Yuan, T.S., Bakar, A.H.A., et al: ‘Partial discharge patterns in high voltage insulation’. IEEE Int. Conf. on Power and Energy (PECON), Kota Kinabalu, Malaysia, 2012, pp. 750755.
    103. 103)
      • 68. Rethmeier, K., Mohaupt, P., Bergmann, V., et al: ‘New studies on PD measurements on MV cable systems at 50 Hz and sinusoidal 0.1 Hz (VLF) test voltage’. 19th Int. Conf. on Electricity Distribution (ICED), Vienna, Austria, 2007, pp. 14.
    104. 104)
      • 98. Lundgaard, L.E.: ‘Partial discharge. XIV. Acoustic partial discharge detection-practical application’, IEEE Electr. Insul. Mag., 1992, 8, (5), pp. 3443.
    105. 105)
      • 77. Liu, T., Xiao, Y., Lu, Y., et al: ‘Effect of voltage frequency on surface discharge characteristics and aging process’. IEEE Electrical Insulation Conf. (EIC), Baltimore, MD, USA, 2017, pp. 463466.
    106. 106)
      • 91. Mor, A.R., Heredia, L.C.C., Muñoz, F.A.: ‘New clustering techniques based on current peak value, charge and energy calculations for separation of partial discharge sources’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (1), pp. 340348.
    107. 107)
      • 13. Wadhwa, C.L.: ‘High voltage engineering’ (New Age International, USA, 2007).
    108. 108)
      • 90. Ma, H., Chan, J.C., Saha, T.K., et al: ‘Pattern recognition techniques and their applications for automatic classification of artificial partial discharge sources’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (2), pp. 468478.
    109. 109)
      • 55. Illias, H.A., Tunio, M.A., Bakar, A.H.A., et al: ‘Partial discharge phenomena within an artificial void in cable insulation geometry: experimental validation and simulation’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (1), pp. 451459.
    110. 110)
      • 42. Morsalin, S., Phung, B.T.: ‘Corona discharge under non-sinusoidal voltage excitation at very low frequency’. 12th Int. Conf. on the Properties and Applications of Dielectric Materials (ICPADM), Xi'an, People's Republic of China, 2018, pp. 653656.
    111. 111)
      • 104. Meijer, S., Agoris, P.D., Seitz, P.P., et al: ‘Condition assessment of power cable accessories using advanced VHF/UHF PD detection’. IEEE Int. Symp. on Electrical Insulation, Toronto, Ontario, Canada, 2006, pp. 482485.
    112. 112)
      • 83. Serdyuk, Y.V, Gubanski, S.M.: ‘Computer modeling of interaction of gas discharge plasma with solid dielectric barriers’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (4), pp. 725735.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2020.0225
Loading

Related content

content/journals/10.1049/iet-smt.2020.0225
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address