Regular Article
Wild-Type p53 Gene Transfer Inhibits Invasion and Reduces Matrix Metalloproteinase-2 Levels in p53-Mutated Human Melanoma Cells

https://doi.org/10.1046/j.1523-1747.2000.00000.xGet rights and content
Under an Elsevier user license
open archive

The tumor suppressor gene p53 has inhibitory effects on cell growth and angiogenesis and induces apoptosis when overexpressed in melanoma and in a variety of tumor cells by adenovirus-mediated gene transfer. The invasive ability of tumor cells, facilitating local infiltration and metastasis, is related to matrix metalloproteinase levels. In melanoma, matrix metalloproteinase-2 and matrix metalloproteinase-9 have a prominent role in this process. The aim of this study was to evaluate whether wild-type p53 overexpression, obtained by a recombinant adenovirus vector (AdCMV.p53), affects cell invasiveness through modulation of matrix metalloproteinase-2 and matrix metalloproteinase-9. Two human melanoma cell lines were used in this study: the SK-MEL-110, carrying a mutated p53 gene, and the SK-MEL-147, carrying the wild-type p53 gene. SK-MEL-110 cells infected with AdCMV.p53 exhibited decreased invasion capability from day 1 after infection, compared with cells not infected or infected with the control vector AdCMV.Null. This reduced invasiveness was associated with decreased matrix metalloproteinase-2 levels in conditioned media whereas no changes were detected in matrix metalloproteinase-9 secreted levels. No modulation in matrix metalloproteinase-2 mRNA levels was detectable, however, after wild-type p53 gene transfer. Furthermore, protein expression of secreted tissue inhibitor of metalloproteinase-2 was not altered by AdCMV.p53 treatment. In contrast, in SK-MEL-147 cells, AdCMV.p53 did not affect cell invasiveness and levels of secreted matrix metalloproteinase-2. Gene transfer of wild-type p53 inhibited proliferation of both cell lines, showing that also SK-MEL-147 cells respond to wild-type p53 overexpression. This novel mechanism of action of wild-type p53 gene transfer may contribute to its antitumor effect by downregulating cell invasion and matrix metalloproteinase-2 secreted levels in mutated p53 human melanoma cell lines.

Keywords

gene therapy
recombinant adenovirus
tumor invasiveness
tumor suppressor genes

Cited by (0)

1

These authors contributed equally to this work.