Issue 6, 2024

Supercritical CO2 technology for the treatment of end-of-life lithium-ion batteries

Abstract

The penetration of Li-ion batteries (LIBs) in the automotive market makes a zero-waste vision for battery recycling urgent. This can play a crucial role in developing a circular economy through the recovery of critical raw materials (CRMs) as well as bringing non-metallic components back to use. In recent years, recycling technologies for LIBs entered a new stage focused on the development of advanced pre-treatment processes to separate all the valuable battery components and more sustainable metallurgical approaches. Compared to common recycling processes, supercritical fluid (SCF) technology has great advantages related to its environmental benignity; chiefly, if CO2 is used as the SCF (scCO2), it is an outstanding solvent for green chemistry approaches. This review aims at providing an overview on the current progresses and open challenges of SCF technology for the treatment of end-of-life LIBs. The fundamentals of SCF technology process are discussed, providing the reader a brief overview of principles, operation procedures and instrumentation. Thereafter, the main applications in the field of battery recycling are reviewed. Successful methods for battery electrolyte recovery via scCO2 are discussed together with pioneering studies on the extraction of critical metals from the cathode that demonstrate promising recovery rates (>60%) for Li, Co, Mn, and Ni. Finally, a specific focus is given on the huge innovation potential of scCO2 to separate and reuse the fluorinated binder from the electrode. At present, the binder is burnt in common recycling processes, leading to hazardous fluorinated gas emissions. This review aims to emphasize the opportunities of the SCF technology in battery waste treatment as a promising approach for resource recovery with significant economy and environmental perspectives.

Graphical abstract: Supercritical CO2 technology for the treatment of end-of-life lithium-ion batteries

Article information

Article type
Tutorial Review
Submitted
26 Jan 2024
Accepted
04 Apr 2024
First published
16 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Sustain., 2024,2, 1692-1707

Supercritical CO2 technology for the treatment of end-of-life lithium-ion batteries

P. Cattaneo, F. D'Aprile, V. Kapelyushko, P. Mustarelli and E. Quartarone, RSC Sustain., 2024, 2, 1692 DOI: 10.1039/D4SU00044G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements