Issue 37, 2023

Shape transitions in a network model of active elastic shells

Abstract

Morphogenesis involves the transformation of initially simple shapes, such as multicellular spheroids, into more complex 3D shapes. These shape changes are governed by mechanical forces including molecular motor-generated forces as well as hydrostatic fluid pressure, both of which are actively regulated in living matter through mechano-chemical feedback. Inspired by autonomous, biophysical shape change, such as occurring in the model organism hydra, we introduce a minimal, active, elastic model featuring a network of springs in a globe-like spherical shell geometry. In this model there is coupling between activity and the shape of the shell: if the local curvature of a filament represented by a spring falls below a critical value, its elastic constant is actively changed. This results in deformation of the springs that changes the shape of the shell. By combining excitation of springs and pressure regulation, we show that the shell undergoes a transition from spheroidal to either elongated ellipsoidal or a different spheroidal shape, depending on pressure. There exists a critical pressure at which there is an abrupt change from ellipsoids to spheroids, showing that pressure is potentially a sensitive switch for material shape. We thus offer biologically inspired design principles for autonomous shape transitions in active elastic shells.

Graphical abstract: Shape transitions in a network model of active elastic shells

Supplementary files

Article information

Article type
Paper
Submitted
06 Aug 2023
Accepted
04 Sep 2023
First published
05 Sep 2023

Soft Matter, 2023,19, 7216-7226

Shape transitions in a network model of active elastic shells

A. Maji, K. Dasbiswas and Y. Rabin, Soft Matter, 2023, 19, 7216 DOI: 10.1039/D3SM01041D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements