Issue 40, 2023

Self-assembly and structures of nanoscale double emulsion droplets through coarse-grained molecular dynamics simulations

Abstract

Examples of self-assembled multiple emulsion droplets on the nanometre scale are very rare. In this work, we use coarse-grained (CG) molecular dynamics simulations to study the self-assembly of ternary mixtures consisting of water, n-heptane, and nonionic surfactant tetraethylene glycol monododecyl ether (C12E4). The water volume fractions studied are 1%, 3%, and 5%, respectively. Various nanoscale emulsions are obtained in a spontaneous process. When the water/surfactant volume ratio vm/s = 1.0/1.0, the obtained emulsion droplets are identified as oil-in-water-in-oil (O/W/O) double types, consisting of an oil core, an inner surfactant layer, a water layer, and an outer surfactant layer. The water molecules are distributed around the hydrophilic ends of the surfactants, while the hydrophobic ends of the surfactants wrap the oil cores and penetrate into the oil bulk. Hydrogen-bond interactions among water and the hydrophilic ends of the surfactants form cross-links that stabilize the double emulsion droplets. The sizes of all the oil cores inside the droplets are <6 nm in diameter, even with the highest water volume fraction of 5%. Both the concentration of free water molecules on the order of 10−6 mol/cm3 and the favourable energy change during emulsion formation indicate that the emulsion droplets are thermodynamically stable. In contrast, for vm/s = 1.0/5.5, no double emulsion but a simple water-in-oil emulsion was observed, with morphologies evolving from oblate to bicontinuous phases with an increase in the water volume fraction from 1% to 5%. Our coarse-grained molecular dynamics simulations provide valuable insight for the preparation of nanoscale double emulsions and the characterization of their structures.

Graphical abstract: Self-assembly and structures of nanoscale double emulsion droplets through coarse-grained molecular dynamics simulations

Supplementary files

Article information

Article type
Paper
Submitted
20 May 2023
Accepted
20 Sep 2023
First published
21 Sep 2023

Soft Matter, 2023,19, 7731-7743

Self-assembly and structures of nanoscale double emulsion droplets through coarse-grained molecular dynamics simulations

Q. Chen and J. Zheng, Soft Matter, 2023, 19, 7731 DOI: 10.1039/D3SM00656E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements