Issue 39, 2023

Gas-phase and solid-state electronic structure analysis and DFT benchmarking of HfCO

Abstract

Ab initio multi-reference configuration interaction (MRCI) and coupled cluster singles doubles and perturbative triples [CCSD(T)] levels of theory were used to study ground and excited electronic states of HfCO. We report potential energy curves, dissociation energies (De), excitation energies, harmonic vibrational frequencies, and chemical bonding patterns of HfCO. The 3Σ ground state of HfCO has an 1σ222 electron configuration and a ∼30 kcal mol−1 dissociation energy with respect to its lowest-energy fragments Hf(3F) + CO(X1Σ+). We further evaluated the De of its isovalent HfCX (X = S, Se, Te, Po) series and observed that they increase linearly from the lighter HfCO to the heavier HfCPo with the dipole moment of the CX ligand. The same linear relationship was observed for TiCX and ZrCX. We utilized the CCSD(T) benchmark values of De, excitation energy, and ionization energy (IE) values to evaluate density functional theory (DFT) errors with 23 exchange–correlation functionals spanning GGA, meta-GGA, global GGA hybrid, meta-GGA hybrid, range-separated hybrid, and double-hybrid functional families. The global GGA hybrid B3LYP and range-separated hybrid ωB97X performed well at representing the ground state properties of HfCO (i.e., De and IE). Finally, we extended our DFT analysis to the interaction of a CO molecule with a Hf surface and observed that the surface chemisorption energy and the gas-phase molecular dissociation energy are very similar for some DFAs but not others, suggesting moderate transferability of the benchmarks on these molecules to the solid state.

Graphical abstract: Gas-phase and solid-state electronic structure analysis and DFT benchmarking of HfCO

Supplementary files

Article information

Article type
Paper
Submitted
26 Jul 2023
Accepted
17 Sep 2023
First published
19 Sep 2023
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2023,25, 26632-26639

Gas-phase and solid-state electronic structure analysis and DFT benchmarking of HfCO

I. R. Ariyarathna, Y. Cho, C. Duan and H. J. Kulik, Phys. Chem. Chem. Phys., 2023, 25, 26632 DOI: 10.1039/D3CP03550F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements