Issue 28, 2022

Thermostable bacterial laccase for sustainable dyeing using plant phenols

Abstract

Laccase is regarded as an efficacious eco-friendly enzyme in various industries. Thus, various laccases have been explored to mitigate the environmental effects of conventional industrial processing; however, the prospects of laccase in hair dyeing have not been thoroughly explored to date. On account of the adverse environmental and health-related issues posed by chemical hair dyeing, laccase as a natural alternative in dyeing hair has recently gained attention. In this study, we executed hair dyeing with different colours and shades of hair dyes developed from natural plant phenols, including ferulic acid, gallic acid, catechol, and syringaldehyde, catalysed by a novel thermostable bacterial laccase (LacT) from Brevibacillus agri. The dyed hair was characterised in terms of its colourimetric parameters (L*, a*, and b*), colour strength (K/S), reflectance (R) and colour durability. L* means luminosity and is defined by L* values from 0 (black) to 100 (white). A positive value of a* means red shades and a negative value indicates green shades. A positive value of b* shows yellow shades and a negative value indicates blue shades. Optical microscopy of circular and longitudinal sections of the dyed hair revealed that the laccase-catalysed dyes did not merely stick to the surface; instead, they well-penetrated the hair. Furthermore, the dyeing process did not affect the surface morphology of the dyed hair. The dyed hair also exhibited a desirable range of colour diversity in terms of market-driven demands and showed considerable resistance to fading during shampooing and pH alterations. Post-dyeing, the texture and tensile strength of the dyed hair remained nearly unchanged. Overall, the outcomes suggest that LacT holds high potential to be exploited extensively in the hair dyeing industry as an alternative to chemical hair dyes.

Graphical abstract: Thermostable bacterial laccase for sustainable dyeing using plant phenols

Article information

Article type
Paper
Submitted
02 Apr 2022
Accepted
03 Jun 2022
First published
21 Jun 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 18168-18180

Thermostable bacterial laccase for sustainable dyeing using plant phenols

V. Panwar, B. Dey, J. N. Sheikh and T. Dutta, RSC Adv., 2022, 12, 18168 DOI: 10.1039/D2RA02137D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements