Issue 1, 2023

Optical properties of extreme tellurium nanowires formed in subnanometer-diameter channels

Abstract

Single tellurium (Te) chains attract much attention as extreme nanowires with unique electronic and spintronic properties. Here, we encapsulate Te from a melt into channels of zeolites AFI (∼0.73 nm-channel diameter) and mordenite (MOR, ∼0.67 × 0.7 nm2 channel cross-section) via high-pressure injection. Using polarized Raman and optical absorption spectra (RS and OAS) of zeolite single crystals with Te (AFI-Te and MOR-Te), we discriminate between features of Te chains and rings formed in the zeolites. We demonstrate good agreement of AFI-Te-chain RS and OAS with the calculated single Te-helix phonon and electron spectra. This suggests a very weak interaction of the AFI-Te-chain with the zeolite and its nearly perfect helix structure lacking inversion/mirror symmetry. An AFI-Te OAS feature, attributed to the electron transitions between Te-helix-Rashba-split valence and conduction bands confirms its 1D-electron-band origin with predicted possibilities of identifying Majorana fermions, manipulating spin transport and realizing topological superconductivity.

Graphical abstract: Optical properties of extreme tellurium nanowires formed in subnanometer-diameter channels

Article information

Article type
Paper
Submitted
02 Sep 2022
Accepted
14 Nov 2022
First published
19 Nov 2022
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2023,5, 220-227

Optical properties of extreme tellurium nanowires formed in subnanometer-diameter channels

V. V. Poborchii, A. V. Fokin and A. A. Shklyaev, Nanoscale Adv., 2023, 5, 220 DOI: 10.1039/D2NA00590E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements