Issue 21, 2022, Issue in Progress

Laser-sintering fabrication of integrated Al/Ni anodes for lithium-ion batteries

Abstract

Integrated Al/Ni electrodes of lithium-ion batteries (LIBs) with variant atomic ratios were successfully fabricated by a one-step laser-sintering process. The microstructure, phase composition, and pore structure were controlled by the raw material composition and laser parameters. The electrodes showed working merits without any conductive agent and binder, or even the collector used in a traditional battery. It was shown that the electrode consisted of multi-phases, i.e., Al, Al3Ni2, Al3Ni, and Ni, when the Al/Ni atomic ratio was higher than 5 : 5. A lower Al/Ni atomic ratio less than 5 : 5 favored the formation of a dual-phase electrode consisting of Al3Ni2 and Ni. As the Al content increased, the specific surface area of the as-sintered electrodes increased in the initial stage and then decreased. The formation of pores was closely related to the content of the residual Al phase after the laser sintering. The residual Al phase filled the pores when the Al content was high, leading to a lower pore size. In contrast, the liquid Al phase completely reacted with the Ni component, leaving a large number of pores at its original sites. The linked pores can serve as transport channels for Li+ ions, provide mass sites for electrochemical reactions, and also buffer huge volume changes of the active material. Among the electrodes, the one with an Al/Ni ratio of 3 : 7 showed the best cycling/rate performance, i.e., a capacity of 522.8 mA h g−1 by a current of 0.1 A g−1 after 200 cycles, even holding to 338.4 mA h g−1 by a big current impact at 2 A g−1. It formed a metallurgical combination between the conductive network and the active material with multiple porous structures, which is helpful for the electrodes to provide high capacity and maintain structural stability during cycling. In addition, the average laser-sintering time of a single electrode was within 10 s, which is suitable for industrial mass production.

Graphical abstract: Laser-sintering fabrication of integrated Al/Ni anodes for lithium-ion batteries

Article information

Article type
Paper
Submitted
30 Nov 2021
Accepted
31 Mar 2022
First published
03 May 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 13168-13179

Laser-sintering fabrication of integrated Al/Ni anodes for lithium-ion batteries

X. Zhang, C. Wang, W. Yang, D. Gao, Z. Zhang and X. Dong, RSC Adv., 2022, 12, 13168 DOI: 10.1039/D1RA08735E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements