Issue 12, 2021

In situ determination of engineered nanomaterial aggregation state in a cosmetic emulsion – toward safer-by-design products

Abstract

Engineered nanomaterials (ENMs) can be used in cosmetics as UV blockers. For these products, the exposure-driven risk for humans and the environment is related to the ENM release during or after use, and thus to the original surface properties and aggregation state of the ENMs. Moreover, as the ENM dispersion in the product also affects the efficiency to screen UV rays, optimizing the formulation can lower the ENM load. Characterizing the ENM behaviour directly in a cosmetic formulation is thus crucial to better assess their risk and develop safer-by-design products. However, the complexity of such a multiphasic system limits in situ characterization using most common analytical tools. Here, we present a novel methodology based on two-dimensional X-ray absorption (2D-XRA) imaging to characterize the dispersion state of ENMs directly in a sunscreen product. Two commercial nano-TiO2 UV filters, displaying different surface coatings, were used to prepare contrasting sunscreen formulations at increasing ENM concentration. Cryogenic scanning transmission electron microscopy (Cryo-STEM) was also used for comparison to evaluate the advantages and limitations of both methods in this context. 2D-XRA proved to be a powerful and rapid technique to analyze both UV filter dispersion in the formulation and the overall product homogeneity. This was enabled by thresholding areas of contrasting ENM densities in the 2D-XRA image, which reflected ENM aggregates, fine ENM dispersions, or voids with a lower UV protection. Image analysis also allowed semi-quantitative evaluation of the relative area of each density range, and of the aggregate size in terms of projected area. In comparison, Cryo-STEM provided a larger magnification than 2D-XRA, which enabled visualisation and sizing of the ENM primary particles, plus the distinction of the emulsion oil and water phases thanks to EDX coupling, but with a smaller and less representative volume of analysis and a higher cost in time and energy. This work is a step forward in measuring ENM behavior in situ in a complex multiphasic matrix constituting a nano-enabled product. Such knowledge at the original stage of the product life cycle is crucial to better predict the ENM fate along with use and end of life, and eventually, develop safer-by-design nano-enabled products.

Graphical abstract: In situ determination of engineered nanomaterial aggregation state in a cosmetic emulsion – toward safer-by-design products

Article information

Article type
Paper
Submitted
13 Apr 2021
Accepted
14 Oct 2021
First published
14 Oct 2021
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Nano, 2021,8, 3546-3559

In situ determination of engineered nanomaterial aggregation state in a cosmetic emulsion – toward safer-by-design products

R. Catalano, D. L. Slomberg, C. Picard, N. Hucher, V. Vidal, F. Saint-Antonin, J. Hubaud, J. Rose and J. Labille, Environ. Sci.: Nano, 2021, 8, 3546 DOI: 10.1039/D1EN00345C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements