Skip to main content
Log in

Association of fruit, pericarp, and epidermis traits with surface autofluorescence in green peppers

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We investigated the association of blue fluorescence (excitation at 365 nm) with the traits of the fruit, pericarp, and epidermis in green peppers. The fruits were manually classified into two groups based on fluorescence brightness. The dark fluorescence group showed the accumulation of blue-absorbing pigments and a thicker cuticular structure, suggesting epidermal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Frank, R. G. Nelson, E. H. Simonne, B. K. Behe and A. H. Simonne, Consumer preferences for color, price, and vitamin C content of bell peppers, HortScience, 2001, 36, 795–800

    Article  Google Scholar 

  2. D. Fatchurrahman, M. Kuramoto, N. Kondo, Y. Ogawa and T. Suzuki, Identification of UV-fluorescence components associated with and detection of surface damage in green pepper (Capsicum annum L), 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, WSCG 2015 - Full Papers Proceedings, 2015, pp. 1–6

    Google Scholar 

  3. M. E. Ramos and M. G. Lagorio, A model considering light reabsorption processes to correct in vivo chlorophyll fluorescence spectra in apples, Photochem. Photobiol. Sci., 2006, 5, 508–512

    Article  CAS  Google Scholar 

  4. J. M. Novo, A. Iriel and M. G. Lagorio, Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa), Photochem. Photobiol. Sci., 2012, 11, 601–770

    Article  Google Scholar 

  5. B. Ospina Calvo, T. L. Parapugna and M. G. Lagorio, Variability in chlorophyll fluorescence spectra of eggplant fruit grown under different light environments: a case study, Photochem. Photobiol. Sci., 2017, 16, 711–720

    Article  CAS  Google Scholar 

  6. J. Stelzner, R. Roemhild, A. Garibay-Hernández, B. Harbaum-Piayda, H.-P. Mock and W. Bilger, Hydroxycinnamic acids in sunflower leaves serve as UV-A screening pigments, Photochem. Photobiol. Sci., 2019, 18, 1649–1659

    Article  CAS  Google Scholar 

  7. S. Fernández, S. Osorio and A. Heredia, Monitoring and visualising plant cuticles by confocal laser scanning microscopy, Plant Physiol. Biochem., 1999, 37, 789–794

    Article  Google Scholar 

  8. R. Kosson, Chlorophyll fluorescence and chilling injury of green pepper as affected by storage conditions, Proceedings of XXVI International Horticultural Congress: Issues and Advances in Postharvest Horticulture, 2002, 628, pp. 379–385

    Google Scholar 

  9. M. G. Lagorio, G. B. Cordon and A. Iriel, Reviewing the relevance of fluorescence in biological systems, Photochem. Photobiol. Sci., 2015, 14, 1538–1559

    Article  CAS  Google Scholar 

  10. A. MacCormac, E. O’Brien and R. O’Kennedy, Classroom activity connections: Lessons from fluorescence, J. Chem. Educ., 2010, 87, 685–686

    Article  CAS  Google Scholar 

  11. M. A. Muyskens and M. S. Stewart, Getting students of all ages excited about fluorescence, J. Chem. Educ., 2011, 88, 259–260

    Article  CAS  Google Scholar 

  12. R. K. Prange, J. M. DeLong, P. A. Harrison, J. C. Leyte and S. D. McLean, Oxygen concentration affects chlorophyll fluorescence in chlorophyll-containing fruit and vegetables, J. Am. Soc. Hortic. Sci., 2003, 128, 603–607

    Article  CAS  Google Scholar 

  13. R. T. Furbank, R. White, J. A. Palta and N. C. Turner, Internal recycling of respiratory CO2 in pods of chickpea (Cicer arietinum L.): the role of pod wall, seed coat, and embryo, J. Exp. Bot., 2004, 55, 1687–1696

    Article  CAS  Google Scholar 

  14. R. J. Pattison, F. Csukasi, Y. Zheng, Z. Fei, E. van der Knaap and C. Catalá, Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development, Plant Physiol., 2015, 168, 1684–1701

    Article  CAS  Google Scholar 

  15. K. A. Pyke and C. A. Howells, Plastid and stromule morphogenesis in tomato, Ann. Bot., 2002, 90, 559–566

    Article  CAS  Google Scholar 

  16. G. B. Dias, V. M. Gomes, T. M. S. Moraes, U. P. Zottich, G. R. Rabelo, A. O. Carvalho, M. Moulin, L. S. A. Gonçalves, R. Rodrigues and M. Da Cunha, Characterization of Capsicum species using anatomical and molecular data, GMR, Genet. Mol. Res., 2013, 12, 6488–6501

    Article  CAS  Google Scholar 

  17. O. Zarrouk, C. Pinheiro, C. S. Misra, V. Fernández and M. M. Chaves, in Water Scarcity and Sustainable Agriculture in Semiarid Environment, ed. I. F. Garcia-Tejero and V. H. Duran-Zuazo, Elsevier, Amsterdam, 1st edn, 2018, ch. 20, pp. 507–533

  18. Y. Li, Q. Li and B. Chen, Organic pollutant penetration through fruit polyester skin: A modified three-compartment diffusion model, Sci. Rep., 2016, 6, 23554

    Article  CAS  Google Scholar 

  19. W. E. Shafer and M. J. Bukovac, Effect of acid treatment of plant cuticles on sorption of selected auxins, Plant Physiol., 1987, 83, 652–656

    Article  CAS  Google Scholar 

  20. S. Otsuki and K. Adachi, Effect of humidity on the fluorescence properties of a medium- sensitive fluorophore in a hydrophilic polymer film, J. Photochem. Photobiol., A, 1993, 71, 169–173

    Article  CAS  Google Scholar 

  21. E. Weryszko-Chmielewska and Z. Michałojć, Anatomical traits of sweet pepper (Capsicum annuum L.) fruit, Acta Agrobot., 2011, 64, 181–188

    Article  Google Scholar 

  22. B. J. Oh, K. D. Kim and Y. S. Kim, Effect of cuticular wax layers of green and red pepper fruits on infection by Colletotrichum gloeosporioides, J. Phytopathol., 1999, 147, 547–552

    Article  Google Scholar 

  23. Zs. Albert, Zs. Erős-Honti, G. Solymossy, L. Kuznyák, A. Miskó, Cs. Deák, M. Ladányi, I. Terbe and I. Papp, Epidermal and exodermal tissue structures are characteristic for the long shelf-life ‘Kárpia’ pepper cultivar, Acta Aliment., 2012, 41, 1–11

    Article  CAS  Google Scholar 

  24. I. Lara, B. Belge and L. F. Goulao, A focus on the biosynthesis and composition of cuticle in fruits, J. Agric. Food Chem., 2015, 63, 4005–4019

    Article  CAS  Google Scholar 

  25. G. J. Buda, T. Isaacson, A. J. Matas, D. J. Paolillo and J. K. C. Rose, Three-dimensional imaging of plant cuticle architecture using confocal scanning laser microscopy, Plant J., 2009, 60, 378–385

    Article  CAS  Google Scholar 

  26. E. Domínguez, M. D. Fernández, J. C. L. Hernández, J. P. Parra, L. España, A. Heredia and J. Cuartero, Tomato fruit continues growing while ripening, affecting cuticle properties and cracking, Physiol. Plant., 2012, 146, 473–486

    Article  Google Scholar 

  27. P. Trivedi, N. Nguyen, A. L. Hykkerud, H. Häggman, I. Martinussen, L. Jaakola and K. Karppinen, Developmental and environmental regulation of cuticular wax biosynthesis in fleshy fruits, Front. Plant Sci., 2019, 10, 431

    Article  Google Scholar 

  28. J. C. Díaz-Pérez, M. D. Muy-Rangel and A. G. Mascorro, Fruit size and stage of ripeness affect postharvest water loss in bell pepper fruit (Capsicum annuum L.), J. Sci. Food Agric., 2007, 87, 68–73

    Article  Google Scholar 

  29. M. Guerra, R. Magdaleno and P. A. Casquero, Effect of site and storage conditions on quality of industrial fresh pepper, Sci. Hortic., 2011, 130, 141–145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keiji Konagaya or Dimas Firmanda Al Riza.

Additional information

Electronic supplementary information (ESI) available: Experimental section. See DOI: 10.1039/d0pp00236d

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konagaya, K., Omwange, K.A., Riza, D.F.A. et al. Association of fruit, pericarp, and epidermis traits with surface autofluorescence in green peppers. Photochem Photobiol Sci 19, 1630–1635 (2020). https://doi.org/10.1039/d0pp00236d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00236d

Navigation