Skip to main content
Log in

In vitro photodynamic treatment of cancer cells induced by aza-BODIPYs

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Two aza-BODIPY photosensitizes (PSs, compounds 7 and 8), featuring an iodine atom on each pyrrolic unit of their structure, were synthesized in fairly good yields starting from commercial products and tested in vitro on two human cancer cell lines (HCT116 and SKOV3) to assess their photodynamic efficacy. After treating the cell cultures with variable concentrations of 7 or 8 and incubating for the desired incubation time, the cells were irradiated for two hours with a red-light emitting diode (LED) device; afterwards the extent of cell death was determined by MTT assay. Besides the killing effect, the new PSs were also studied to determine further parameters related to photodynamic efficacy, such as the resistance towards photobleaching, the rate of singlet oxygen production, the fluorescence quantum yields, the cellular uptake and the localization inside the cells and, finally, flow cytometric analysis for apoptosis. Considering the results as a whole, these aza-BODIPYs can be considered to be promising photosensitizers because of their IC50 values being below micromolar concentrations and for more rather interesting features. Actually, these molecules have proved to be: (a) quite stable towards photobleaching; (b) good producers of singlet oxygen and (c) highly penetrating the cells with a wide distribution in the cytosol. Furthermore, in accordance with the good rate of singlet oxygen production, the apoptotic cells reach 30% and this allows us to assume a low inflammatory effect of the in vivo PDT treatment; thus a possible in vivo application of these aza-BODIPYs might be plausible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  2. L. Cheng, C. Wang, L. Feng, K. Yang and Z. Liu, Functional nanomaterials for phototherapies of cancer, Chem. Rev., 2014, 114, 10869–10939.

    Article  CAS  PubMed  Google Scholar 

  3. G. Szakacs, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe and M. M. Gottesman, Targeting multidrug resistance in cancer, Nat. Rev. Drug Discovery, 2006, 5, 219–234.

    Article  CAS  PubMed  Google Scholar 

  4. C. Bock and T. Lengauer, Managing drug resistance in cancer: lessons from HIV therapy, Nat. Rev. Cancer, 2012, 12, 494–501.

    Article  CAS  PubMed  Google Scholar 

  5. G. B. Kharkwal, S. K. Sharma, Y. Y. Huang, T. Dai and M. R. Hamblin, Photodynamic therapy for infections: clinical applications, Lasers Surg. Med., 2011, 43, 755–767.

    Google Scholar 

  6. I. J. Macdonald and T. J. Dougharty, Basic principles of photodynamic therapy, J. Porphyrins Phthalocyanines, 2001, 5, 105–129.

    Article  CAS  Google Scholar 

  7. J. Kou, D. Dou and L. Yang, Porphyrin photosensitizers in photodynamic therapy and its applications, Oncotarget, 2017, 46, 81591–81603.

    Article  Google Scholar 

  8. D. Kessel, Apoptosis and associated phenomena as a determinants of the efficacy of photodynamic therapy, Photochem. Photobiol. Sci., 2015, 14, 1397–1402.

    CAS  Google Scholar 

  9. M. Ochsner, Photodynamic therapy: the clinical perspective. Review on applications for control of diverse tumorous and non-tumorous diseases, Drug Res., 1997, 47, 1185–1194.

    CAS  Google Scholar 

  10. B. F. Overholt, M. Panjehpour and D. L. Halberg, Photodynamic therapy for Barrett’s esophagus with dysplasia and/or early stage carcinoma: long-term results, Gastrointest. Endos., 2003, 58, 183–188.

    Google Scholar 

  11. H. Barr, N. A. Sheperd, A. Dix, D. J. H. Roberts, W. C. Tan and N. Krasner, Eradication of high-grade dysplasia in columnar-lined (Barrett’s) oesophagus by photodynamic therapy with endogenously generated protoporphyrin IX, Lancet, 1996, 348, 584–585.

    Article  CAS  PubMed  Google Scholar 

  12. M. P. Copper, I. B. Tan, H. Oppelaar, M. C. Ruevekamp and F. A. Stewart, Meta-tetra(hydroxyphenyl)chlorin Photodynamic Therapy in Early-Stage Squamous Cell Carcinoma of the Head and Neck, Arch. Otolaryngol, 2003, 129, 709–711.

    Google Scholar 

  13. R. Baskaran, J. Lee and S. G. Yang, Clinical development of photodynamic agents and therapeutic applications, Biomater. Res., 2018, 22, 25.

    Google Scholar 

  14. E. Caruso, M. Gariboldi, A. Sangion, P. Gramatica and S. Banfi, Synthesis, photodynamic activity, and quantitative structure-activity relationship modelling of a series of BODIPYs, J. Photochem. Photobiol, B, 2017, 167, 269–281.

    CAS  Google Scholar 

  15. E. Caruso, S. Banfi, P. Barbieri, B. Leva and V. T. Orlandi, Synthesis and antibacterial activity of novel cationic BODIPY photosensitizers, J. Photochem. Photobiol., B, 2012, 114, 44–51.

    CAS  Google Scholar 

  16. S. G. Awuah and Y You, Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy, RSC Adv., 2012, 2, 11169–11183.

    Article  CAS  Google Scholar 

  17. A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung and K. Burgess, BODIPY dyes in photodynamic therapy, Chem. Soc. Rev., 2013, 42, 77–88.

    CAS  PubMed  Google Scholar 

  18. A. Turksoy, D. Yildiz and E. U. Akkaya, Photosensitization and controlled photosensitization with BODIPY dyes, Coord. Chem. Rev., 2019, 379, 47–64.

    CAS  Google Scholar 

  19. R. Prieto-Montero, A. Prieto-Castañeda, R. Sola-Llano, A. R. Agarrabeitia, D. García-Fresnadillo, I. López-Arbeloa, A. Villanueva, M. J. Ortiz, S. de la Moya and V. Martínez-Martínez, Exploring BODIPY derivatives as singlet oxygen photosensitizers for PDT, Photochem. Photobiol., 2020, DOI: 10.1111/php.l3232.

  20. J. Pliquett, A. Dubois, C. Racoeur, N. Mabrouk, S. Amor, R. Lescure, A. Bettaïeb, B. Collin, C. Bernhard, F. Denat, P. S. Bellaye, C. Paul, E. Bodio and C. Goze, A promising family of fluorescent water-soluble aza-BODIPY dyes for in vivo molecular imaging, Bioconjugate Chem., 2019, 30, 1061–1066.

    Article  CAS  Google Scholar 

  21. Y. Tanga, L. Xuea, Q. Yua, D. Chena, Z. Cheng, W. Wangb, J. Shaoa and X. Dong, Smart Aza-BODIPY photosensitizer for tumor microenvironment-enhanced cancer phototherapy, ACS Appl. Bio Mater., 2019, 12, 5888–5897.

    Google Scholar 

  22. M. A. T. Rogers, 2:4-Diarylpyrroles. Part I. Synthesis of 2:4-diarylpyrroles and 2:2′:4:4′-tetra-arylazadipyrromethines, J. Chem. Soc., 1943, 590–596.

  23. W. H. Davies and M. A. T. Rogers, 2:4-Diarylpyrroles. Part IV. The formation of acylated 5-amino-2:4-diphenylpyrroles from β-benzoly-ᾳ-phenylpropionitrile and some notes on the Leuckart reaction, J. Chem. Soc., 1944, 126–131.

  24. T. H. Allik, R. E. Hermes, G. Sathyamoorthi and J. H. Boyer, Proc. SPIE-Int. Soc. Opt. Eng., 1994, 240–248.

  25. Y. Ge and D. F. O’Shea, Azadipyrromethenes: from traditional dye chemistry to leading edge applications, Chem. Soc. Rev., 2016, 45, 3846–3864.

    Article  CAS  PubMed  Google Scholar 

  26. C. A. Parker and W. T. Rees, Correction of fluorescence spectra and measurement of fluorescence quantum efficiency, Analyst, 1960, 85, 587–600.

    Article  CAS  Google Scholar 

  27. I. E. Kochevar and R. W. Redmond, Photosensitized production of singlet oxygen, Methods Enzymol., 2000, 319, 20–28.

    Article  CAS  PubMed  Google Scholar 

  28. M. C. Malacarne, S. Banfi, A. S. Alberton and E. Caruso, Photodynamic activity of new photosensitizers obtained from 5,10,15,20-tetrapentafluorophenylporphyrin, J. Porphyrins Phthalocyanines, 2019, 23, 1–10.

    Article  Google Scholar 

  29. M. C. Alley, D. A. Scudiero, A. Monks, M. L. Hursey, M. J. Czerwinski, D. L. Fine, B. J. Abbott, J. G. Mayo, R. H. Shoemaker and M. R. Boyd, Feasibility of drug screening with panels of human tumor cell lines using a micro-culture tetrazolium assay, Cancer Res., 1988, 48, 589–601.

    CAS  PubMed  Google Scholar 

  30. S. Wattanasin and W. S. Murphy, An Improved Procedure for the Preparation of Chalcones and Related Enones, Synthesis, 1980, 647–650.

  31. A. Gorman, J. Killoran, C. O’Shea, T. Kenna, W. M. Gallagher and D. F. O’Shea, In Vitro Demonstration of the Heavy-Atom Effect for Photodynamic Therapy, J. Am. Chem. Soc., 2004, 126, 10619–10631.

  32. S. Banfi, E. Caruso, S. Zaza, M. Mancini, M. B. Gariboldi and E. Monti, Synthesis and photodynamic activity of a panel of BODIPY dyes, J. Photochem. Photobiol., B, 2012, 114, 52–60.

    CAS  Google Scholar 

  33. Y. Xu, M. Zhao, L. Zou, L. Wu, M. Xie, T. Yang, S. Liu, W. Huang and Q. Zhao, Highly stable and multifunctional Aza-BODIPY-based phototherapeutic agent for anticancer treatment, ACS Appl. Mater. Interfaces, 2018, 10, 44324–44335.

    CAS  Google Scholar 

  34. N. Adarsh, R. R. Avirah and D. Ramaiah, Tuning photosensitized singlet oxygen generation efficiency of novel Aza-BODIPY dyes, Org. Lett., 2010, 12, 5720–5723.

    CAS  Google Scholar 

  35. G. Jori, Tumour photosensitizers: approaches to enhance the selectivity and efficiency of photodynamic therapy, J. Photochem. Photobiol., B, 1996, 36, 87–93.

    CAS  Google Scholar 

  36. A. Ormond and H. Freeman, Dye sensitizers for photodynamic therapy, Materials, 2013, 6, 817–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S. Banfi, G. Nasini, S. Zaza and E. Caruso, Synthesis and Photo-Physical properties of a series of BODIPY dyes, Tetrahedron, 2013, 69, 4845–4856.

    Article  CAS  Google Scholar 

  38. R. Bonnett and G. Martinez, Photobleaching of sensitisers used in photodynamic therapy, Tetrahedron, 2001, 57, 9513–9547.

    Article  CAS  Google Scholar 

  39. I. Georgakoudi and T. H. Foster, Singlet oxygen-versus non-singlet oxygen-mediated mechanism of sensitizer photobleaching and their effects on photodynamic dosimetry, Photochem. Photobiol, 1998, 67, 612–625.

    CAS  Google Scholar 

  40. E. Caruso, M. C. Malacarne, S. Banfi, M. B. Gariboldi and V. T. Orlandi, Cationic diarylporphyrins: in vitro versatile anticancer and antibacterial photosensitizers, J. Photochem. Photobiol., B, 2019, 197, 111548.

    Google Scholar 

  41. M. Lualdi, E. Pedrini, K. Rea, L. Monti, D. Scaldaferri, M. Gariboldi, A. Camporeale, P. Ghia, E. Monti, A. Tomassetti, F. Acquati and R. Taramelli, Pleiotropic modes of action in tumor cells of RNASET2, an evolutionary highly conserved extracellular RNase, Oncotarget, 2015, 6, 7851–7865.

    Article  PubMed  PubMed Central  Google Scholar 

  42. European Bioinformatics Institute http://www.EBI.ac.uk; Expression Atlas. In silico RNASET2 gene comparison expression between HCT-116 cell line and SKOV-3 cell line.

  43. G. Qian, L. Wang, X. Zheng and T. Yu, Deactivation of cisplatin-resistant human lung/ovary cancer cells with pyropheophorbide-ᾳ methyl ester-photodynamic therapy, Cancer Biol. Ther., 2017, 18, 984–989; S. Nagata, Apoptosis by death factor, Cell, 1997, 88, 335–365.

    Google Scholar 

  44. M. A. Doustvandi, F. Mohammadnejad, B. Mansoori, A. Mohammadi, F. Navaejpour, B. Baradaran and H. Tajalli, The interaction between the light source dose and caspase-dependent and –independent apoptosis in human SK-MEL-3 skin cancer cells following photodynamic therapy with phthalocyanines: a comparable study, J. Photochem. Photobiol, B, 2017, 176, 62–68.

    CAS  Google Scholar 

  45. J. Osterloh and M. G. H. Vicente, Mechanisms of porphyrinoid localization in tumors, J. Porphyrins Phthalocyanines, 2002, 6, 305–324.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Caruso.

Additional information

PhD student of the “Life Science and Biotechnology” course at University of Insubria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malacarne, M.C., Banfi, S. & Caruso, E. In vitro photodynamic treatment of cancer cells induced by aza-BODIPYs. Photochem Photobiol Sci 19, 790–799 (2020). https://doi.org/10.1039/d0pp00026d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00026d

Navigation