Issue 18, 2020

Highly Z-selective synthesis of 1,3-oxathiol-2-ylidenes and 4-methylene-oxazolidine-2-thiones via atom-specific 5-exo-dig cyclization of propargyl alcohol with isothiocyanate

Abstract

DBU mediated 5-exo-dig cyclization of isothiocyanate and propargyl alcohol leading to valuable heterocyclic compounds has been accomplished. The different modes of nucleophilicity (either S-selective or N-selective) of isothiocyanates were found to depend on the substitution pattern of propargyl alcohol. The terminal propargyl alcohol and isothiocyanate underwent an N-nucleophilic attack to afford 3-substituted 4-methylene oxazolidine-2-thiones. In contrast, exclusive S-nucleophilic cyclization was observed with internal propargyl alcohol to produce (Z)-1,3-oxathiol-2-ylidenes and (Z)-N-(Z)-4-ethylidene-1,3-oxathiolan-2-ylidenes from secondary and primary propargyl alcohols, respectively. The formation of high Z-selectivity in the imine motif and alkene is the highlight of this new method as multiple selectivities over C[double bond, length as m-dash]N and C[double bond, length as m-dash]C in a single system are synthetically highly challenging. The Z-selectivity in imine and alkene may be attributed to electronic and steric factors respectively.

Graphical abstract: Highly Z-selective synthesis of 1,3-oxathiol-2-ylidenes and 4-methylene-oxazolidine-2-thiones via atom-specific 5-exo-dig cyclization of propargyl alcohol with isothiocyanate

Supplementary files

Article information

Article type
Paper
Submitted
15 Jan 2020
Accepted
06 Apr 2020
First published
07 Apr 2020

Org. Biomol. Chem., 2020,18, 3552-3562

Highly Z-selective synthesis of 1,3-oxathiol-2-ylidenes and 4-methylene-oxazolidine-2-thiones via atom-specific 5-exo-dig cyclization of propargyl alcohol with isothiocyanate

S. Antony Savarimuthu, D. G. Leo Prakash, S. Augustine Thomas, T. Gandhi and M. K. Bera, Org. Biomol. Chem., 2020, 18, 3552 DOI: 10.1039/D0OB00083C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements