Issue 35, 2020

Impact of diffusion methods and metal cations on photochromic three-component D–A hybrid heterostructures

Abstract

D–A hybrid heterostructures are an attractive class of hybrid complexes composed of semiconducting organic and inorganic components, which make them potential candidates for applications in the photoelectric fields, particularly as photochromic materials. Herein, we report that the combination of metal cations (M = Zn2+ or Cd2+), silicomolybdic anions, and N,N-di(4-pyridyl)-1,4,5,8-naphthalene diimide (DPNDI) via two diffusion methods (A and B) led to four three-component D–A hybrid heterostructures with silicomolybdic anions as electron donors, and one-dimensional (1-D) naphthalenediimide coordination networks of different metal cations, [Zn2(DPNDI)2(H2O)4]·(SiMo12O40) (1-A and 1-B) and [Cd2(DPNDI)2(H2O)4]·(SiMo12O40) (2-A and 2-B), as electron acceptors. Although the different diffusion methods, 1-B, 2-A and 2-B, are isostructures with close cell parameters. Due to the different ionic radii and electronegativity of metal cations in isostructural 1-B and 2-B, they exhibit different electron-transfer photochromic behaviors. This study paves a new path for designing novel photochromic materials through such third-component metal cations.

Graphical abstract: Impact of diffusion methods and metal cations on photochromic three-component D–A hybrid heterostructures

Supplementary files

Article information

Article type
Paper
Submitted
18 Jul 2020
Accepted
08 Aug 2020
First published
10 Aug 2020

Dalton Trans., 2020,49, 12411-12417

Impact of diffusion methods and metal cations on photochromic three-component D–A hybrid heterostructures

M. You, M. Li, J. Liu and M. Lin, Dalton Trans., 2020, 49, 12411 DOI: 10.1039/D0DT02532A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements