Skip to main content

Advertisement

Log in

Hydrogels: soft matters in photomedicine

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT), a shining beacon in the realm of photomedicine, is a non-invasive technique that utilizes dye-based photosensitizers (PSs) in conjunction with light and oxygen to produce reactive oxygen species to combat malignant tissues and infectious microorganisms. Yet, for PDT to become a common, routine therapy, it is still necessary to overcome limitations such as photosensitizer solubility, long-term side effects (e.g., photosensitivity) and to develop safe, biocompatible and target-specific formulations. Polymer based drug delivery platforms are an effective strategy for the delivery of PSs for PDT applications. Among them, hydrogels and 3D polymer scaffolds with the ability to swell in aqueous media have been deeply investigated. Particularly, hydrogel-based formulations present real potential to fulfill all requirements of an ideal PDT platform by overcoming the solubility issues, while improving the selectivity and targeting drawbacks of the PSs alone. In this perspective, we summarize the use of hydrogels as carrier systems of PSs to enhance the effectiveness of PDT against infections and cancer. Their potential in environmental and biomedical applications, such as tissue engineering photoremediation and photochemistry, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

AFPAA:

Amine functionalized polyacrylamide

ALA:

δ-Aminolevulinic acid

ALA-PDT:

Aminolevulinic acid-photodynamic therapy

AuNP:

Gold nanoparticles

BODIPY:

Boron-dipyrromethene

BODIPY-MA:

BODIPY methacrylic monomer

BODIPY-NMe:

2,6-Diiodo-1,3,5,7,-tetramethyl-8-(N-methyl-4-pyridyl)-BODIPY iodide

BP:

Black phosphorus

CIN:

Cervical intraepithelial neoplasia;

CPAT:

Chemiluminescent photodynamic anti microbial therapy

DPBF:

1,3-Diphenylisobenzofuran

DMA:

Dynamic mechanical analysis

DMPA:

2,2’-Dimethoxy-2-phenyl-acetophenone

ECM:

Extracellular matrices

FRET:

Fluorescence resonance energy transfer

HAL:

ALA hexyl ester; hexylaminolevulinate

HPMC:

Hydroxypropyl methylcellulose

HPPH:

2-Devinyl-2-(1-hexyloxyethyl) pyropheophorbide

LCST:

Lower critical solution temperature

LED:

Light emitting diode

MB:

Methylene blue

MEO2MA:

2-(2-Methoxyethoxy)ethyl methacrylate

MN:

Microneedle

MRE:

Magnetic resonance elastography

MRSA:

Methicillin-resistant Staphylococcus aureus

mTHPP:

5,10,15,20-Tetrakis(3-hydroxyphenyl) porphyrin

NH2-TPP:

5,10,15,20-Tetrakis(4-aminophenyl)porphyrin

NIR:

Near infrared

PAA:

Poly(acrylic acid)

PACT:

Photodynamic antimicrobial chemotherapy

PAM:

Poly(acrylamide)

P(Am-co-BMA):

Poly(acrylamide and butyl methacrylate)

Pc:

Phthalocyaninato

PCI:

Photochemical internalization

PDD:

Photodynamic diagnosis

PDEAAm:

Poly(N,N-diethylacrylamide)

PDEAEM:

Poly(N,N′-diethylaminoethyl methacrylate)

PDMS:

Poly(dimethyl siloxane)

PDT:

Photodynamic therapy

PEG:

Poly(ethylene glycol)

PEGDA:

Poly(ethylene glycol)-diacrylate

PEO:

Poly(ethylene oxide)

PETA:

Pentaerythritol triacrylate

pHEMA:

Poly(2-hydroxyethyl methacrylate)

PMA:

Poly(methyl acrylate)

PMMA:

Poly(methyl methacrylate)

PNIPAAm:

Poly(isopropylacrylamide)

PPO:

Poly(ethylene oxide)

PPIC:

Protoporphyrin IX

PS:

Photosensitizer

PTT:

Photothermal therapy

PUVA:

Psoralen and ultraviolet A

PVA:

Poly(vinyl alcohol)

ROS:

Reactive oxygen species

SAOS:

Small amplitude oscillatory shear

TMPyP:

5,10,15,20-Tetrakis(N-methyl-4-pyridyl)porphyrin tetra tosylate

TPPS4:

5,10,15,20-Tetrakis(4-sulfonatophenyl) porphyrin

TRIPOD:

2,4,6-Tris(p-formylphenoxy)-1,3,5-triazine

TTA-UC:

Triplet–triplet annihilation photon upconversion

Notes and references

  1. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  PubMed  Google Scholar 

  2. J. Moan and Q. Peng, An outline of the hundred-year history of PDT, Anticancer Res., 2003, 23, 3591–3600.

    PubMed  Google Scholar 

  3. I. J. MacDonald and T. J. Dougherty, Basic principles of photodynamic therapy, J. Porphyrins Phthalocyanines, 2001, 5, 105–129.

    CAS  Google Scholar 

  4. D. Jocham, H. Stepp and R. Waidelich, Photodynamic diagnosis in urology: State-of-the-art, Eur. Urol., 2008, 53, 1138–1150.

    Article  CAS  PubMed  Google Scholar 

  5. S. B. Brown, E. A. Brown and I. Walker, The present and future role of photodynamic therapy in cancer treatment, Lancet Oncol., 2004, 5, 497–508.

    Article  CAS  PubMed  Google Scholar 

  6. M. R. Hamblin, Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes, Curr. Opin. Microbiol., 2016, 33, 67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. K. Berg, P. K. Selbo, K. Parmickaite, T. E. Tjelle, K. Sandvig, D. Moan, G. Gaudernack, O. Fodstad, S. Kjolsrud, H. Anholt, G. H. Rodal, S. K. Rodal and A. Hogset, Photochemical internalization: A novel technology for delivery of macromolecules into cytosol, Cancer Res., 1999, 59, 1180–1183.

    CAS  PubMed  Google Scholar 

  8. A. Castaño, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1, 279–293.

    Google Scholar 

  9. J. Z. Zhao, W. Wu, J. F. Sun and S. Guo, Triplet photosensitizers: from molecular design to applications, Chem. Soc. Rev., 2013, 42, 5323–5351.

    Article  CAS  PubMed  Google Scholar 

  10. L. Brancaleon and H. Moseley, Laser and non-laser light sources for photodynamic therapy, Lasers Med. Sci., 2002, 17, 173–186.

    CAS  Google Scholar 

  11. M. C. DeRosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 2002, 233, 351–371.

    Google Scholar 

  12. K. Plaetzer, B. Krammer, J. Berlanda, F. Berr and T. Kiesslich, Photophysics and photochemistry of photodynamic therapy: fundamental aspects, Lasers Med. Sci., 2009, 24, 259–268.

    CAS  Google Scholar 

  13. C. S. Foote, Definition of Type I and Type II photosensitized oxidation, Photochem. Photobiol., 1991, 54, 659.

    Article  CAS  Google Scholar 

  14. M. S. Baptista, J. Cadet, P. Di Mascio, A. A. Ghogare, A. Greer, M. R. Hamblin, C. Lorente, S. C. Nunez, M. S. Ribeiro, A. H. Thomas, M. Vignoni and T. M. Yoshimura, Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways, Photochem. Photobiol., 2017, 93, 912–919.

    Article  CAS  Google Scholar 

  15. C. Tanielian, R. Mechin, R. Seghrouchni and C. Schweitzer, Mechanistic and kinetic aspects of photosensitization in the presence of oxygen, Photochem. Photobiol., 2000, 71, 12–19.

    Article  CAS  Google Scholar 

  16. A. P. Castaño, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death, Photodiagn. Photodyn. Ther., 2005, 2, 1–23.

    Article  Google Scholar 

  17. A. B. Ormond and H. Freeman, Dye sensitizers for photodynamic therapy, Materials, 2013, 6, 817–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. Moan, Properties for optimal PDT sensitizers, J. Photochem. Photobiol., B, 1990, 5, 521–524.

    Article  CAS  Google Scholar 

  19. C. J. Gomer, Preclinical examination of 1st and 2nd generation photosensitizers used in photodynamic therapy, Photochem. Photobiol., 1991, 54, 1093–1107.

    Article  CAS  Google Scholar 

  20. M. R. Detty, S. L. Gibson and S. J. Wagner, Current clinical and preclinical photosensitizers for use in photodynamic therapy, J. Med. Chem., 2004, 47, 3897–3915.

    Article  CAS  PubMed  Google Scholar 

  21. M. O. Senge, Lead structures for applications in photodynamic therapy. Part 4. mTHPC – A drug on its way from second to third generation photosensitizer?, Photodiagn. Photodyn. Ther., 2012, 9, 170–179.

    Article  CAS  Google Scholar 

  22. J. F. Lovell, T. W. B. Liu, J. Chen and G. Zheng, Activatable Photosensitizers for Imaging and Therapy, Chem. Rev., 2010, 110, 2839–2857.

    Article  CAS  PubMed  Google Scholar 

  23. A. E. O’Connor, W. M. Gallagher and A. T. Byrne, Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy, Photochem. Photobiol., 2009, 85, 1053–1074.

    Article  CAS  Google Scholar 

  24. S. G. Awuah and Y. You, Boron dipyrromethene (BODIPY)- based photosensitizers for photodynamic therapy, RSC Adv., 2012, 2, 11169–11183.

    Article  CAS  Google Scholar 

  25. R. R. Allison, G. H. Downie, R. Cuenca, X. H. Hu, C. J. H. Childs and C. H. Sibata, Photosensitizers in clinical PDT, Photodiagn. Photodyn. Ther., 2004, 1, 27–42.

    CAS  Google Scholar 

  26. E. S. Nyman and P. H. Hynninen, Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2004, 73, 1–28.

    Article  CAS  Google Scholar 

  27. M. Ethirajan, Y. Chen, P. Joshi and R. K. Pandey, The role of porphyrin chemistry in tumor imaging and photodynamic therapy, Chem. Soc. Rev., 2011, 40, 340–362.

    Article  CAS  PubMed  Google Scholar 

  28. M. O. Senge, Stirring the porphyrin alphabet soup - functionalization reactions for porphyrins, Chem. Commun., 2011, 47, 1943–1960.

    Article  CAS  Google Scholar 

  29. M. O. Senge, Y. M. Shaker, M. Pintea, C. Ryppa, S. S. Hatscher, A. Ryan and Y. Sergeeva, Synthesis of meso-Substituted ABCD-type Porphyrins via Functionalization Reactions, Eur. J. Org. Chem., 2010, 237–258.

  30. C. Moylan, A. M. K. Sweed, Y. M. Shaker, E. M. Scanlan and M. O. Senge, Lead structures for applications in photodynamic therapy 7. Efficient synthesis of amphiphilic glycosylated lipid porphyrin derivatives: refining linker conjugation for potential PDT applications, Tetrahedron, 2015, 71, 4145–4153.

    Article  CAS  Google Scholar 

  31. H. Abrahamse and M. R. Hamblin, New photosensitizers for photodynamic therapy, Biochem. J., 2016, 473, 347–364.

    Article  CAS  PubMed  Google Scholar 

  32. W. M. Sharman, J. E. van Lier and C. M. Allen, Targeted photodynamic therapy via receptor mediated delivery systems, Adv. Drug Delivery Rev., 2004, 56, 53–76.

    Article  CAS  Google Scholar 

  33. C. Moylan, E. M. Scanlan and M. O. Senge, Chemical Synthesis and Medicinal Applications of Glycoporphyrins, Curr. Med. Chem., 2015, 22, 2238–2348.

    Article  CAS  PubMed  Google Scholar 

  34. G. S. Smith and B. Therrien, Targeted and multifunctional arene ruthenium chemotherapeutics, Dalton Trans., 2011, 40, 10793–10800.

    Article  CAS  PubMed  Google Scholar 

  35. L. Rogers, N. N. Sergeeva, E. Paszko, G. M. F. Vaz and M. O. Senge, Lead Structures for Applications in Photodynamic Therapy. 6. Temoporfin Anti-Inflammatory Conjugates to Target the Tumor Microenvironment for In Vitro PDT, PLoS One, 2015, 10, e0125372.

    Google Scholar 

  36. S. Callaghan and M. O. Senge, The good, the bad, and the ugly – controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy, Photochem. Photobiol. Sci., 2018, 17, 1490–1514.

    Article  CAS  PubMed  Google Scholar 

  37. F. Bolze, S. Jenni, A. Sour and V. Heitz, Molecular photosensitisers for two-photon photodynamic therapy, Chem. Commun., 2017, 53, 12857–12877.

    Article  CAS  Google Scholar 

  38. K. M. Scherer, R. H. Bisby, S. W. Botchwayand and A. W. Parker, New Approaches to Photodynamic Therapy from Types I, II and III to Type IV Using One or More Photons, Anti-Cancer Agents Med. Chem., 2017, 17, 171–189.

    CAS  Google Scholar 

  39. M. Wainwright, Photodynamic therapy: the development of new photosensitisers, Anticancer Agents Med. Chem., 2008, 8, 280–291.

    CAS  Google Scholar 

  40. E. Paszko, C. Ehrhardt, M. O. Senge, D. P. Kelleher and J. V. Reynolds, Nanodrug applications in photodynamic therapy, Photodiagn. Photodyn. Ther., 2011, 8, 14–29.

    CAS  Google Scholar 

  41. M. A. Rajora, J. W. H. Lou and G. Zheng, Advancing porphyrin’s biomedical utility via supramolecular chemistry, Chem. Soc. Rev., 2017, 46, 6433–6469.

    Article  CAS  PubMed  Google Scholar 

  42. Y. N. Konan, R. Gurny and E. Allemann, State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2002, 66, 89–106; (b) F. Moret and E. Reddi, Strategies for optimizing the delivery to tumors of macrocyclic photosensitizers used in photodynamic therapy, J. Porphyrins Phthalocyanines, 2017, 21, 1–18.

    Google Scholar 

  43. S. Verma, G. M. Watt, Z. Mal and T. Hasan, Strategies for enhanced photodynamic therapy effects, Photochem. Photobiol., 2007, 83, 996–1005.

    Article  CAS  Google Scholar 

  44. D. D. Luo, K. A. Carter, D. Miranda and J. F. Lovell, Chemophototherapy: An Emerging Treatment Option for Solid Tumors, Adv. Sci., 2017, 4, 1600106.

    Google Scholar 

  45. J. M. Dabrowski and L. G. Arnaut, Photodynamic therapy (PDT) of cancer: from local to systemic treatment, Photochem. Photobiol. Sci., 2015, 14, 1765–1780.

    CAS  Google Scholar 

  46. R. L. Siegel, K. D. Miller and A. Jemal, Cancer statistics, 2017, CA Cancer J. Clin., 2017, 67, 7–30.

    Article  Google Scholar 

  47. D. E. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  48. J. D. Spikes, Photodynamic action: from paramecium to photochemotherapy, Photochem. Photobiol., 1997, 65, 142S–147S.

    Article  CAS  Google Scholar 

  49. C. Abels, Targeting of the vascular system of solid tumours by photodynamic therapy (PDT), Photochem. Photobiol. Sci., 2004, 3, 765–771.

    CAS  Google Scholar 

  50. M. O. Senge and M. W. Radomski, Platelets, photosensitizers, and PDT, Photodiagn. Photodyn. Ther., 2013, 10, 1–16.

    CAS  Google Scholar 

  51. A. P. Castano, P. Mroz and M. R. Hamblin, Photodynamic therapy and anti-tumour immunity, Nat. Rev. Cancer, 2006, 6, 535–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: Part three - Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction, Photodiagn. Photodyn. Ther., 2005, 2, 91–106.

    CAS  Google Scholar 

  53. L. B. Rocha, L. C. Gomes-da-Silva, J. M. Dabrowski and L. G. Arnaut, Elimination of primary tumours and control of metastasis with rationally designed bacteriochlorin photodynamic therapy regimens, Eur. J. Cancer, 2015, 51, 1822–1830.

    Article  CAS  PubMed  Google Scholar 

  54. J. D. Meyers, T. Doane, C. Burda and J. P. Basilion, Nanoparticles for imaging and treating brain cancer, Nanomedicine, 2013, 8, 123–143.

    Article  CAS  PubMed  Google Scholar 

  55. G. Nie, H. J. Hah, G. Kim, Y.-E. K. Lee, M. Qin, T. S. Ratani, P. Fotiadis, A. Miller, A. Kochi, D. Gao, T. Chen, D. A. Orringer, O. Sagher, M. A. Philbert and R. Kopelman, Hydrogel nanoparticles with covalently linked coomassie blue for brain tumor delineation visible to the surgeon, Small, 2012, 8, 884–891.

    Article  CAS  PubMed  Google Scholar 

  56. X. H. Huang, P. K. Jain, I. H. El-Sayed and M. A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci., 2008, 23, 217–228.

    Google Scholar 

  57. B. Jang, J. Y. Park, C. H. Tung, I. H. Kim and Y. Choi, Gold Nanorod-Photosensitizer Complex for Near-Infrared Fluorescence Imaging and Photodynamic/Photothermal Therapy In Vivo, ACS Nano, 2011, 5, 1086–1094.

    Article  CAS  PubMed  Google Scholar 

  58. E. S. Shibu, M. Hamada, N. Murase and V. Biju, Nanomaterials formulations for photothermal and photodynamic therapy of cancer, J. Photochem. Photobiol., C, 2013, 15, 53–72.

    Article  CAS  Google Scholar 

  59. R. Vankayala, C. C. Lin, P. Kalluru, C. S. Chiang and K. C. Hwang, Goldnanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light, Biomaterials, 2014, 35, 5527–5538.

    Article  CAS  PubMed  Google Scholar 

  60. K. Wang, Y. Zhang, J. Wang, A. Yuan, M. Sun, J. Wu and Y. Hu, Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy, Sci. Rep., 2016, 6, 27421.

    Google Scholar 

  61. L. M. Weiner, A. K. Webb, B. Limbago and M. A. Dudek, Antimicrobial-resistant pathogens associated with healthcare- associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011–2014, Infect. Control Hosp. Epidemiol., 2016, 37, 1288–1301.

    Google Scholar 

  62. R. M. Klevens, M. A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, L. H. Harrison, R. Lynfield, G. Dumyati, J. M. Townes, A. S. Craig, E. R. Zell, G. E. Fosheim, L. K. McDougal, R. B. Carey and S. K. Fridkin, Invasive methicillin-resistant Staphylococcus aureus infections in the United States, J. Am. Med. Assoc., 2007, 298, 1763–1771.

    Article  CAS  Google Scholar 

  63. M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, 42, 13–29.

    Article  CAS  PubMed  Google Scholar 

  64. M. Wainwright, Photoantimicrobials and PACT: what’s in an abbreviation?, Photochem. Photobiol. Sci., 2019, 18, 12–14.

    Article  CAS  PubMed  Google Scholar 

  65. E. Alves, M. A. F. Faustino, M. G. P. M. S. Neves, A. Cunha, H. Nadais and A. Almeida, Potential applications of porphyrins in photodynamic inactivation beyond the medical scope, J. Photochem. Photobiol., C, 2015, 22, 34–57.

    Article  CAS  Google Scholar 

  66. T. Dai, Y.-Y. Huang and M. R. Hamblin, Photodynamic therapy for localized infections - state of the art, Photodiagn. Photodyn. Ther., 2009, 6, 170–188.

    CAS  Google Scholar 

  67. X. Ragàs, D. Sánchez-García, R. Ruiz-González, T. Dai, M. Agut, M. R. Hamblin and S. Nonell, Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy, J. Med. Chem., 2010, 53, 7796–7803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. K. I. Møller, B. Konigshoj, P. A. Philipsen, V. O. Thomsen and H. C. Wulf, How Finsen’s light cured lupus vulgaris, Photodermatol., Photoimmunol. Photomed., 2005, 21, 118–124.

    Article  Google Scholar 

  69. A. S. Garcez, M. S. Ribeiro, G. P. Tegos, S. C. Núñez, A. O. C. Jorge and M. R. Hamblin, Antimicrobial photodynamic therapy combined with conventional endodontic treatment to eliminate root canal biofilm infection, Lasers Surg. Med., 2007, 39, 59–66.

    Article  PubMed  PubMed Central  Google Scholar 

  70. T. Dai, G. P. Tegos, Z. Lu, L. Huang, T. Zhiyentayev, M. J. Franklin, D. G. Baer and M. R. Hamblin, Photodynamic therapy for Acinetobacter baumannii burn infections in mice, Antimicrob. Agents Chemother., 2009, 53, 3929–3934.

    Article  CAS  Google Scholar 

  71. M. Kielmann, C. Prior and M. O. Senge, Porphyrins in troubled times: a spotlight on porphyrins and their metal complexes for explosives testing and CBRN defense, New J. Chem., 2018, 42, 7529–7550.

    CAS  Google Scholar 

  72. B. W. Sigusch, A. Pfitzner, V. Albrecht and E. Glockmann, Efficacy of photodynamic therapy on inflammatory signs and two selected periodontopathogenic species in a beagle dog model, J. Periodontol., 2005, 76, 1100–1105.

    Article  CAS  PubMed  Google Scholar 

  73. M. A. Atieh, Photodynamic therapy as an adjunctive treatment for chronic periodontitis: a meta-analysis, Lasers Med. Sci., 2010, 25, 605–613.

    Google Scholar 

  74. P. Meisel and T. Kocher, Photodynamic therapy for periodontal diseases: State of the art, J. Photochem. Photobiol., B, 2005, 79, 159–170.

    Article  CAS  Google Scholar 

  75. O. V. Akilov, S. Kosaka, K. O’Riordan, X. Song, M. Sherwood, T. Flotte, J. W. Foley and T. Hasan, The role of photosensitizer molecular charge and structure on the efficacy of photodynamic therapy against leishmania parasites, Chem. Biol., 2006, 13, 839–847.

    Article  CAS  PubMed  Google Scholar 

  76. T. N. Demidova and M. R. Hamblin, Photodynamic therapy targeted to pathogens, Int. J. Immunopathol. Pharmacol., 2004, 17, 245–254.

    Article  CAS  PubMed  Google Scholar 

  77. S. George, M. R. Hamblin and A. Kishen, Uptake pathways of anionic and cationic photosensitizers into bacteria, Photochem. Photobiol. Sci., 2009, 8, 788–795.

    Article  CAS  Google Scholar 

  78. L. M. De Freitas, E. N. Lorenzón, N. A. Santos-Filho, L. H. de P. Zago, M. P. Ulian, K. T. de Oliveira, E. M. Cilli and C. R. Fontana, Antimicrobial photodynamic therapy enhanced by the peptide aurein 1.2, Sci. Rep., 2018, 8, 4212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Y. Nitzan, M. Guttermanz, Z. Malik and B. Ehrenberg, Inactivation of gram-negative bacteria by photosensitized porphyrins, Photochem. Photobiol., 1992, 55, 89–96.

    Article  CAS  PubMed  Google Scholar 

  80. M. R. Hamblin, D. A. O’Donnell, N. Murthy, K. Rajagopalan, N. Michaud, M. E. Sherwood and T. Hasan, Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria, J. Antimicrob. Chemother., 2002, 49, 941–951.

    Article  CAS  PubMed  Google Scholar 

  81. J. W. Gould, M. G. Mercurio and C. A. Elmets, Cutaneous photosensitivity diseases induced by exogenous agents, J. Am. Acad. Dermatol., 1995, 33, 551–573.

    Article  CAS  PubMed  Google Scholar 

  82. S. Carpenter, M. J. Fehr, G. A. Kraus and J. W. Petrich, Chemiluminescent activation of the antiviral activity of hypericin: a molecular flashlight, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 12273–12277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. F. Nakonechny, M. A. Firer, Y. Nitzan and M. Nisnevitch, Intracellular antimicrobial photodynamic therapy: a novel technique for efficient eradication of pathogenic bacteria, Photochem. Photobiol., 2010, 86, 1350–1355.

    Article  CAS  Google Scholar 

  84. A. Wiehe, J. M. O’Brien and M. O. Senge, Trends and Targets in Antiviral Phototherapy, Photochem. Photobiol. Sci., 2019, DOI: 10.1039/C9PP00211A.

  85. M. Wainwright and M. S. Baptista, The application of photosensitisers to tropical pathogens in the blood supply, Photodiagn. Photodyn. Ther., 2011, 8, 240–248.

    Article  CAS  Google Scholar 

  86. M. Lozano, J. Cid and T. H. Müller, Plasma Treated with Methylene Blue and Light: Clinical Efficacy and Safety Profile, Transfus. Med. Rev., 2013, 27, 235–240.

    Google Scholar 

  87. P. Schlenke, Pathogen Inactivation Technologies for Cellular Blood Components: an Update, Transfus. Med. Hemother., 2014, 41, 309–325.

    Article  Google Scholar 

  88. V. Salunkhe, P. F. van der Meer, D. de Korte, J. Seghatchian and L. Gutiérrez, Development of blood transfusion product pathogen reduction treatments: A review of methods, current applications and demands, Transfus. Apher. Sci., 2015, 52, 19–34.

    Article  PubMed  Google Scholar 

  89. T. Maisch, R. M. Szeimies, G. Jori and C. Abels, Antibacterial photodynamic therapy in dermatology, Photochem. Photobiol. Sci., 2004, 3, 907–917.

    Article  CAS  Google Scholar 

  90. X. Wen, Y. Li and M. R. Hamblin, Photodynamic therapy in dermatology beyond non-melanoma cancer: An update, Photodiagn. Photodyn. Ther., 2017, 19, 140–152.

    Article  CAS  Google Scholar 

  91. E. A. Gordon, E. A. Spratt, L. V. Gorcey, N. A. Soter and J. A. Brauer, Phototherapy, photodynamic therapy and photophoresis in the treatment of connective-tissue diseases: a review, Br. J. Dermatol., 2015, 173, 19–30.

    Article  Google Scholar 

  92. M. A. Pathak and T. B. Fitzpatrick, The evolution of photochemotheraphy with psoralens and UVA (PUVA) - 2000 BC to 1992 AD, J. Photochem. Photobiol., B, 1992, 14, 3–22.

    Article  CAS  Google Scholar 

  93. H. C. Williams, R. P. Dellavalle and S. Garner, Acne vulgaris, Lancet, 2012, 379, 361–372.

    Article  PubMed  Google Scholar 

  94. C. A. Morton, S. B. Brown, S. Collins, S. Ibbotson, H. Jenkinson, H. Kurwa, K. Langmack, K. McKenna, H. Moseley, A. D. Pearse, M. Stringer, D. K. Taylor, G. Wong and L. E. Rhodes, Guidelines for topical photodynamic therapy: report of a workshop of the British Photodermatology Group, Br. J. Dermatol., 2002, 146, 552–567.

    Article  CAS  PubMed  Google Scholar 

  95. B. Pollock, D. Turner, M. R. Stringer, R. A. Bojar, V. Goulden, G. I. Stables and W. J. Cunliffe, Dermatological surgery and lasers topical aminolaevulinic acid-photodynamic therapy for the treatment of acne vulgaris: a study of clinical efficacy and mechanism of action, Br. J. Dermatol., 2004, 151, 616–622.

    Article  CAS  PubMed  Google Scholar 

  96. M. Boen, J. Brownell, P. Patel and M. M. Tsoukas, The role of photodynamic therapy in acne: an evidence-based review, Am. J. Clin. Dermatol., 2017, 18, 311–321.

    Article  PubMed  Google Scholar 

  97. Y. Itoh, Y. Ninomiya, S. Tajima and A. Ishibashi, Photodynamic therapy for acne vulgaris with topical 5-aminolevulinic acid, Arch. Dermatol., 2000, 136, 1093–1095.

    CAS  Google Scholar 

  98. M. T. Wan and J. Y. Lin, Current evidence and applications of photodynamic therapy in dermatology, Clin. Cosmet. Investig. Dermatol., 2014, 7, 145–163.

    PubMed  PubMed Central  Google Scholar 

  99. R. R. Allison, Photodynamic therapy: oncologic horizons, Future Oncol., 2014, 10, 123–124.

    Article  CAS  PubMed  Google Scholar 

  100. Z. Huang, H. Xu, A. D. Meyers, A. L. Musani, L. Wang, R. Tagg, A. B. Barqawi and Y. K. Chen, Photodynamic therapy for treatment of solid tumors – potential and technical challenges, Technol. Cancer Res. Treat., 2008, 7, 309–320.

    CAS  Google Scholar 

  101. P. Vaupel and L. Harrison, Tumor hypoxia: Causative factors, compensatory mechanisms, and cellular response, Oncologist, 2004, 9, 4–9.

    Article  PubMed  Google Scholar 

  102. V. H. Fingar, T. J. Wieman, Y. J. Park and B. W. Henderson, Implications of a pre-existing tumor hypoxic fraction on photodynamic therapy, J. Surg. Res., 1992, 53, 524–528.

    Article  CAS  PubMed  Google Scholar 

  103. T. M. Stinik, J. A. Hampton and B. W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate, Br. J. Cancer, 1998, 77, 1386–1394.

    Article  Google Scholar 

  104. J. V. Frangioni, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol., 2003, 7, 626–634.

  105. R. W. Boyle and D. Dolphin, Structure and biodistribution relationships of photodynamic sensitizers, Photochem. Photobiol., 1996, 64, 469–485.

    Article  CAS  Google Scholar 

  106. A. S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Delivery Rev., 2002, 54, 3–12.

    Article  CAS  Google Scholar 

  107. X. W. Du, J. Zhou, J. F. Shi and B. Xu, Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials, Chem. Rev., 2015, 115, 13165–13307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. N. A. Peppas, P. Bures, W. Leobandung and H. Ichikawa, Hydrogels in pharmaceutical formulations, Eur. J. Pharm. Biopharm., 2000, 50, 27–46.

    Article  CAS  PubMed  Google Scholar 

  109. E. Calo and V. V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products, Eur. Polym. J., 2015, 65, 252–267.

    Article  CAS  Google Scholar 

  110. T. Vermonden and B. Klumperman, The past, present and future of hydrogels, Eur. Polym. J., 2015, 72, 341–343.

    Article  CAS  Google Scholar 

  111. M. K. Nguyen and E. Alsberg, Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine, Prog. Polym. Sci., 2014, 39, 1235–1265.

    Article  CAS  Google Scholar 

  112. J. M. V. Bemmelen, Second Mémoire. L′hydrogel de l’acide silicique, Recl. Trav. Chim. Pays-Bas, 1888, 7, 69–74.

    Article  Google Scholar 

  113. W. Y. Seow and C. A. E. Hauser, Short to ultrashort peptide hydrogels for biomedical uses, Mater. Today, 2014, 17, 381–388.

    CAS  Google Scholar 

  114. S. J. Buwalda, K. W. Boere, P. J. Dijkstra, J. Feijen, T. Vermonden and W. E. Hennink, Hydrogels in a historical perspective: from simple networks to smart materials, J. Controlled Release, 2014, 190, 254–273.

    Article  CAS  Google Scholar 

  115. J. H. Grindlay and O. T. Clagett, A plastic sponge prosthesis for use after phneumonectomoy; preliminary report of an experimental study, Proc. Staff Meet. Mayo Clin., 1949, 24, 538–539.

    CAS  Google Scholar 

  116. S. M. Tadavarthy, J. H. Moller and K. Amplatz, Polyvinyl alcohol (Ivalon) - A new embolic material, Am. J. Roentgenol., 1975, 125, 609–616.

    Article  CAS  Google Scholar 

  117. A. Danno, Gel formation of aqueous solution of polyvinyl alcohol irradiated by gamma rays from cobalt-60, J. Phys. Soc. Jpn., 1958, 13, 722–727.

    Article  CAS  Google Scholar 

  118. O. Wichterle and D. Lìm, Hydrophilic gels for biological use, Nature, 1960, 185, 117–118.

    Article  Google Scholar 

  119. For an update and uses of hydrogels in ocular drug delivery see: J. J. Kang-Mieler, C. R. Osswald and W. F. Mieler, Advances in ocular drug delivery: Emphasis on the posterior segment, Expert Opin. Drug Delivery, 2014, 11, 1647–1660.

  120. M. Babu, H. K. S. Yadav, A. Moin and H. G. Shivakumar, In vitroin vivo evaluation of poly (2-hydroxyethyl methacrylate-co-methylmethacrylate)hydrogel implants containing cisplatin, Acta Pharm. Sin. B, 2011, 1, 261–267.

  121. M. Rizwan, R. Yahya, A. Hassan, M. Yar, A. D. Azzahari, F. Selvanathan and C. N. Abouloula, pH sensitive hydrogels in drug delivery: Brief history, properties, swelling and release mechanism, material selection and application, Polymers, 2017, 9, 137.

    Article  PubMed Central  CAS  Google Scholar 

  122. T. Ren, Z. Mao, J. Guoa and C. Gao, Directional Migration of Vascular Smooth Muscle Cells Guided by a Molecule Weight Gradient of Poly(2-hydroxyethyl methacrylate) Brushes, Langmuir, 2013, 29, 6386–6395.

    Article  CAS  PubMed  Google Scholar 

  123. T. A. Tockary, K. Osada, Q. Chen, K. Machitani, A. Dirisala, S. Uchida, T. Nomoto, K. Toh, Y. Matsumoto, K. Itaka, K. Nitta, K. Nagayama and K. Kataoka, Tethered PEG Crowdedness Determining Shape and Blood Circulation Profile of Polyplex Micelle Gene Carriers, Macromolecules, 2013, 46, 6585–6592.

    Article  CAS  Google Scholar 

  124. E. Bakaic, N. M. B. Smeets and T. Hoare, Injectable hydrogels based on poly(ethylene glycol) and derivatives as functional biomaterials, RSC Adv., 2015, 5, 35469–35486.

    Article  CAS  Google Scholar 

  125. A. Katchalsky and I. Michaeli, Polyelectrolyte gels in salt solution, J. Polym. Sci., 1955, 15, 69–86.

    Article  CAS  Google Scholar 

  126. J. Kopeček and P. Kopečková, HPMA copolymers: Origins, early developments, present, and future, Adv. Drug Delivery Rev., 2010, 62, 122–149.

    Article  CAS  Google Scholar 

  127. T. Fujiwara, T. Mukose, T. Yamaoka, H. Yamane, S. Sakurai and Y. Kimura, Novel thermo-responsive formation of a hydrogel by stereo-complexation between PLLA-PEG-PLLA and PDLA-PEG-PDLA block copolymers, Macromol. Biosci., 2001, 1, 204–208.

    CAS  Google Scholar 

  128. K. Kirakci, V. Šícha, J. Holub, P. Kubát and K. Lang, Luminescent hydrogel particles prepared by self-assembly of β-cyclodextrin polymer and octahedral molybdenum cluster complexes, Inorg. Chem., 2014, 53, 13012–13018.

    CAS  Google Scholar 

  129. C. P. McCoy, F. Stomeo, S. E. Plush and T. Gunnlaugsson, Soft matter pH sensing: From luminescent lanthanide pH switches in solution to sensing in hydrogels, Chem. Mater., 2006, 18, 4336–4343.

    Article  CAS  Google Scholar 

  130. F. D. Jochum and P. Theato, Temperature- and light-responsive smart polymer materials, Chem. Soc. Rev., 2013, 42, 7468–7483.

    Article  CAS  PubMed  Google Scholar 

  131. S. Chen and J. Singh, Controlled delivery of testosterone from smart polymer solution based systems: in vitro evaluation, Int. J. Pharm., 2005, 295, 183–190.

    Article  CAS  PubMed  Google Scholar 

  132. N. B. Graham and M. E. McNeill, Hydrogels for controlled drug delivery, Biomaterials, 1984, 5, 27–36.

    Google Scholar 

  133. F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad and H. M. Akil, Classification, processing and application of hydrogels: A review, Mater. Sci. Eng., C, 2015, 57, 414–433.

  134. K. Varaprasad, G. M. Raghavendra, T. Jayaramudu, M. M. Yallapu and R. Sadiku, A mini review on hydrogels classification and recent developments in miscellaneous applications, Mater. Sci. Eng., C, 2017, 79, 958–971.

    Article  CAS  Google Scholar 

  135. M. M. Khansari, L. V. Sorokina, P. Mukherjee, F. Mukhtar, M. R. Shirdar, M. Shahidi and T. Shokuhfar, Classification of Hydrogels Based on Their Source: A Review and Application in Stem Cell Regulation, JOM, 2017, 69, 1340–1347.

    Article  Google Scholar 

  136. J. C. Middleton and A. J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials, 2000, 21, 2335–2346.

    Article  CAS  PubMed  Google Scholar 

  137. S. Kaga, M. Arslan, R. Sanyal and A. Sanyal, Dendrimers and Dendrons as Versatile Building Blocks for the Fabrication of Functional Hydrogels, Molecules, 2016, 21, 497, DOI: 10.3390/molecules21040497; (b) L. Chambre, W. S. Saw, G. Ekineker, L. V. Kiew, W. Y. Chong, H. B. Lee, L. Y. Chung, Y. Bretonnière, F. Dumoulin and A. Sanyal, Surfactant-Free Direct Access to Porphyrin-Cross-Linked Nanogels for Photodynamic and Photothermal Therapy, Bioconjugate Chem., 2018, 29, 4149–4159; (c) L. Chambre, A. Degirmenci, R. Sanyal and A. Sanyal, Multi-Functional Nanogels as Theranostic Platforms: Exploiting Reversible and Nonreversible Linkages for Targeting, Imaging, and Drug Delivery, Bioconjugate Chem., 2018, 29, 1885–1896.

    Google Scholar 

  138. W. Zhu and J. Ding, Synthesis and Characterization of a Redox-Initiated, Injectable, Biodegradable Hydrogel, J. Appl. Polym. Sci., 2006, 99, 2375–2383.

    Article  CAS  Google Scholar 

  139. J. Pushpamalar, A. K. Veeramachineni, C. Owh and X. J. Loh, Biodegradable Polysaccharides for Controlled Drug Delivery, ChemPlusChem, 2016, 81, 504–515.

    Article  CAS  PubMed  Google Scholar 

  140. M. Deshmukh, Y. Singh, S. Gunaseelan, D. Gao, S. Stein and P. J. Sinko, Biodegradable poly(ethylene glycol) hydrogels based on a self-elimination degradation mechanism, Biomaterials, 2010, 31, 6675–6684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. N. Sanabria-DeLong, S. K. Agrawal, S. R. Bhatia and G. N. Tew, Controlling Hydrogel Properties by Crystallization of Hydrophobic Domains, Macromolecules, 2006, 39, 1308–1310.

    Article  CAS  Google Scholar 

  142. S. Garg and A. Garg, Hydrogel: Classification, Properties, Preparation and Technical Features, Asian J. Biomat. Res., 2016, 2, 163–170.

    Google Scholar 

  143. G. R. Deen and X. J. Loh, Stimuli-Responsive Cationic Hydrogels in Drug Delivery Applications, Gels, 2018, 4, 1–13.

    Article  CAS  Google Scholar 

  144. J. M. Rosiak and F. Yoshii, Hydrogels and their medical applications, Nucl. Instr. Meth. Phys. Res. B, 1991, 151, 56–64.

    Article  Google Scholar 

  145. X. Dinga and Y. Wang, Weak bond-based injectable and stimuli responsive hydrogels for biomedical applications, J. Mater. Chem. B, 2017, 5, 887–906.

    Article  CAS  Google Scholar 

  146. B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini and N. A. Peppas, Hydrogels in Regenerative Medicine, Adv. Mater., 2009, 21, 3307–3329.

    CAS  Google Scholar 

  147. N. A. Peppas, Y. Huang, M. Torres-Lugo, J. H. Ward and J. Zhang, Physicochemical foundations and structural design of hydrogels in medicine and biology, Annu. Rev. Biomed. Eng., 2000, 2, 9–29.

    Article  CAS  PubMed  Google Scholar 

  148. E. M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review, J. Adv. Res., 2015, 6, 105–121.

    Article  CAS  PubMed  Google Scholar 

  149. R. Vulpe, D. L. Cerf, V. Dulong, M. Popa, C. Peptu, L. Veretiuc and L. Picton, Rheological study of in situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin, Mater. Sci. Eng., C, 2016, 69, 388–397.

    Article  CAS  Google Scholar 

  150. S. Burkert, T. Schmidt, U. Gohs, H. Dorschner and A. Karl- Friedrich, Cross-linking of poly (N-vinyl pyrrolidone) films by electron beam irradiation, Radiat. Phys. Chem., 2007, 76, 1324–1328.

    CAS  Google Scholar 

  151. C. M. Hassan and N. A. Peppas, Structure and Morphology of Freeze/Thawed PVA Hydrogels, Macromolecules, 2000, 33, 2472–2479.

    Article  CAS  Google Scholar 

  152. W. E. Hennink and C. F. van Nostrum, Novel crosslinking methods to design hydrogels, Adv. Drug Delivery Rev., 2002, 54, 13–36.

    Article  CAS  Google Scholar 

  153. J. Maitra and V. K. Shukla, Cross-linking in hydrogels - a review, Am. J. Polym. Sci., 2014, 4, 25–31.

    Google Scholar 

  154. Y.-C. Nho, J.-S. Park and Y.-M. Lim, Preparation of Poly (acrylic acid) Hydrogel by Radiation Crosslinking and Its Application for Mucoadhesives, Polymers, 2014, 6, 890–898.

    Article  CAS  Google Scholar 

  155. S. Van Vlierberghe, P. Dubruel and E. Schacht, Biopolymer-Based Hydrogels as Scaffolds for Tissue Engineering Applications: A Review, Biomacromolecules, 2011, 12, 1387–1408.

    Article  PubMed  CAS  Google Scholar 

  156. M. B. Mellott, K. Searcy and M. V. Pishko, Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization, Biomaterials, 2001, 22, 929–941.

    Article  CAS  PubMed  Google Scholar 

  157. L. C. Lopergolo, A. B. Lugao and L. H. Catalani, Direct UV photocrosslinking of poly(N-vinyl-2-pyrrolidone) (PVP) to produce hydrogels, Polymer, 2003, 44, 6217–6222.

    Article  CAS  Google Scholar 

  158. J. Yeh, Y. B. Ling, J. M. Karp, J. Gantz, A. Chandawarkar, G. Eng, J. Bluming, R. Langer and A. Khademhosseini, Micromolding of shape-controlled, harvestable cell-laden hydrogels, Biomaterials, 2006, 27, 5391–5398.

    Article  CAS  PubMed  Google Scholar 

  159. D. Das and S. Pal, Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery, RSC Adv., 2015, 5, 25014–25050.

    Article  CAS  Google Scholar 

  160. M. O. Taha, W. Nasser, A. Ardakani and H. S. AlKhatib, Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: Switching from enteric coating release into biphasic profiles, Int. J. Pharm., 2008, 350, 291–300.

    Article  CAS  PubMed  Google Scholar 

  161. H. S. AlKhatib, M. O. Taha, K. M. Aiedeh, Y. Bustanji and B. Sweileh, Synthesis and in vitro behavior of iron-crosslinked N-methyl and N-benzyl hydroxamated derivatives of alginic acid as controlled release carriers, Eur. Polym. J., 2006, 42, 2464–2474.

    Article  CAS  Google Scholar 

  162. R. Benavides, R. Urbano, D. Morales-Acosta, M. E. Martínez-Pardo and H. Carrasco, Gamma irradiation of polystyrene-co-acrylic acid copolymers to use them as membranes in fuel cells, Int. J. Hydrogen Energy, 2017, 42, 30417–30422.

    Article  CAS  Google Scholar 

  163. F. C. Beall and A. E. Witt, Polymerization of Methyl Methacrylate by Heat-catalyst and Gamma-irradiation Methods, Wood Fiber, 1972, 4, 179–184.

    CAS  Google Scholar 

  164. J. L. Vanderhooft, M. Alcoutlabi, J. J. Magda and G. D. Prestwich, Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering, Macromol. Biosci., 2009, 9, 20–28.

    CAS  Google Scholar 

  165. K. Benz, C. Stippich, C. Osswald, C. Gaissmaier, N. Lembert, A. Badke, E. Steck, W. K. Aicher and J. A. Mollenhauer, Rheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair, BMC Musculoskeletal Disord., 2012, 13, 54.

    Article  CAS  Google Scholar 

  166. K. S. Anseth, C. N. Bowman and L. B. Peppas, Mechanical properties of hydrogels and their experimental determination, Biomaterials, 1996, 17, 1647–1657.

    Article  CAS  PubMed  Google Scholar 

  167. R. K. Korhonena, M. S. Laasanena, J. Toyras, J. Rieppob, J. Hirvonena, H. J. Helminen and J. S. Jurvelina, Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation, J. Biomech., 2002, 35, 903–909.

    Article  Google Scholar 

  168. A. E. Forte, F. D’Amico, M. N. Charalambides, D. Dini and J. G. Williams, Modelling and experimental characterisation of the rate dependent fracture properties of gelatine gels, Food Hydrocolloids, 2015, 46, 180–190.

    Article  CAS  Google Scholar 

  169. R. Kocen, M. Gasik, A. Gantar and S. Novak, Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load, Biomed. Mater., 2017, 12, 025004.

    Google Scholar 

  170. C. Q. Yan and D. J. Pochan, Rheological properties of peptide-based hydrogels for biomedical and other applications, Chem. Soc. Rev., 2010, 39, 3528–3540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. C. Yan, A. Altunbas, T. Yucel, R. P. Nagarkar, J. P. Schneider and D. J. Pochan, Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable β hairpin peptide hydrogels, Soft Matter, 2010, 6, 5143–5156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. M. Aliaghaie, H. Mirzadeh, E. Dashtimoghadam and S. Taranejoo, Investigation of gelation mechanism of an injectable hydrogel based on chitosan by rheological measurements for a drug delivery application, Soft Matter, 2012, 8, 7128–7137.

    Article  CAS  Google Scholar 

  173. V. M. Gun’ko, I. N. Savina and S. V. Mikhalovsky, Properties of Water Bound in Hydrogels, Gels, 2017, 3, 37–67.

    Article  PubMed Central  CAS  Google Scholar 

  174. G. Liu, M. Pastakia, M. B. Fenn and V. Kishore, Saos-2 cell-mediated mineralization on collagen gels: Effect of densification and bioglass incorporation, J. Biomed. Mater. Res., Part A, 2016, 104, 1121–1134.

    Article  CAS  Google Scholar 

  175. T. Segura, B. C. Anderson, P. H. Chung, R. E. Webber, K. R. Shull and L. D. Shea, Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern, Biomaterials, 2005, 26, 359–371.

    Article  CAS  PubMed  Google Scholar 

  176. Y. Li, X. Li, C. Chen, D. Zhao, Z. Su and G. Ma, A rapid, non-invasive and non-destructive method for studying swelling behavior and microstructure variations of hydrogels, Carbohydr. Polym., 2016, 151, 1251–1260.

    CAS  Google Scholar 

  177. A. Engler, L. Richert, J. Wong, C. Picart and D. Discher, Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion, Surf. Sci., 2004, 570, 142–154.

    CAS  Google Scholar 

  178. S. I. Ringleb, Q. Chen, D. S. Lake, A. Manduca, R. L. Ehman and K.-N. An, Quantitative Shear Wave Magnetic Resonance Elastography: Comparison to a Dynamic Shear Material Test, Magn. Reson. Med., 2005, 53, 1197–1201.

    Google Scholar 

  179. L. Berra and A. Kumar, Prevention of endotracheal tube biofilm formation in intubated critically ill patients, Curr. Respir. Med. Rev., 2010, 6, 3–10.

    Article  Google Scholar 

  180. S. L. Ryan, A. M. Baird, G. Vaz, A. J. Urquhart, M. O. Senge, D. J. Richard and A. M. Davies, Drug Discovery Approaches Utilizing Three-Dimensional Cell Culture, Assay Drug Dev. Technol., 2016, 14, 19–28.

    CAS  Google Scholar 

  181. M. W. Tibbit and K. S. Anseth, Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture, Biotechnol. Bioeng., 2009, 103, 655–663.

    Article  CAS  Google Scholar 

  182. J. Herman, Y. Zhang, V. Castranova and S. L. Neal, Emerging Technologies for Optical Spectral Detection of Reactive Oxygen Species, Anal. Bioanal. Chem., 2018, 410, 6079–6095.

    CAS  Google Scholar 

  183. B. Li, L. Lin, H. Lin and B. C. Wilson, Photosensitized Singlet Oxygen Generation and Detection: Recent Advances and Future Perspectives in Cancer Photodynamic Therapy, J. Biophotonics, 2016, 9, 1314–1325.

    Article  CAS  PubMed  Google Scholar 

  184. M. A. Filatov and M. O. Senge, Molecular devices based on reversible singlet oxygen binding in optical and photomedical applications, Mol. Syst. Des. Eng., 2016, 1, 258–272.

    Article  CAS  Google Scholar 

  185. S. Belali, H. Savoie, J. M. O’Brien, A. A. Cafolla, B. O’Connell, A. R. Karimi, R. W. Boyle and M. O. Senge, Synthesis and characterization of temperature-sensitive and chemically cross-linked poly(n–isopropylacrylamide)/photosensitizer hydrogels for applications in photodynamic therapy, Biomacromolecules, 2018, 19, 1592–1601.

    Article  CAS  PubMed  Google Scholar 

  186. C. Flors, M. J. Fryer, J. Waring, B. Reeder, U. Bechtold, P. M. Mullineaux, S. Nonell, M. T. Wilson and N. R. Baker, Imaging the Production of Singlet Oxygen in Vivo Using a New Fluorescent Sensor, Singlet Oxygen Sensor Green®, J. Exp. Bot., 2006, 57, 1725–1734.

    Article  CAS  PubMed  Google Scholar 

  187. J. Sun, Y. Guo, R. Xing, T. Jiao, Q. Zou and X. Yan, Synergistic in Vivo Photodynamic and Photothermal Antitumor Therapy Based on Collagen-Gold Hybrid Hydrogels with Inclusion of Photosensitive Drugs, Colloids Surf., A, 2017, 514, 155–160.

    CAS  Google Scholar 

  188. W. R. Midden and T. A. Dahl, Biological Inactivation by Single Oxygen: Distinguishing O2(1Δg) and O2(1Σg+), Biochim. Biophys. Acta, Gen. Subj., 1992, 1117, 216–222.

    Article  CAS  Google Scholar 

  189. R. A. Craig, C. P. McCoy, Á. T. De Baróid, G. P. Andrews, S. P. Gorman and D. S. Jones, Quantification of singlet oxygen generation from photodynamic hydrogels, React. Funct. Polym., 2015, 87, 1–6.

    CAS  Google Scholar 

  190. Á. T. D. Baróid, C. P. McCoy, R. A. Craig, L. Carson, G. P. Andrews, D. S. Jones and S. P. Gorman, Optimization of Singlet Oxygen Production from Photosensitizer- Incorporated, Medically Relevant Hydrogels, J. Biomed. Mater. Res., Part B, 2017, 105, 320–326.

    Article  CAS  Google Scholar 

  191. E. Vittorino, G. Giancane, S. Bettini, L. Valli and S. Sortino, Bichromophoric Multilayer Films for the Light- Controlled Generation of Nitric Oxide and Singlet Oxygen, J. Mater. Chem., 2009, 19, 8253–8258; (b) P. R. Ogilby and C. S. Foote, Chemistry of singlet oxygen. 42. Effect of solvent, solvent isotopic substitution, and temperature on the lifetime of singlet molecular oxygen (1Δg), J. Am. Chem. Soc., 1983, 105, 3423–3403.

    Google Scholar 

  192. C. Brady, S. E. J. Bell, C. Parsons, S. P. Gorman, D. S. Jones and C. P. McCoy, Novel porphyrin incorporated hydrogels for photoactive intraocular lens biomaterials, J. Phys. Chem. B, 2007, 111, 527–534.

    Article  CAS  PubMed  Google Scholar 

  193. J. Schlothauer, S. Hackbarth and B. Röder, New Benchmark for Time-Resolved Detection of Singlet Oxygen Luminescence – Revealing the Evolution of Lifetime in Living Cells with Low Dose Illumination, Laser Phys. Lett., 2008, 6, 216.

    Google Scholar 

  194. A search for the key word “hydrogel” gave 50 500 returns in the Web of Knowledge Core Collection (topics) and 58 100 returns in Scopus (title, key words and abstract).

  195. S. Campbell, D. Maitland and T. Hoare, Enhanced Pulsatile Drug Release from Injectable Magnetic Hydrogels with Embedded Thermosensitive Microgels, ACS Macro Lett., 2015, 4, 312–316.

  196. K. R. Kamath and K. Park, Biodegradable hydrogels in drug delivery, Adv. Drug Delivery Rev., 1993, 11, 59–84.

    Article  CAS  Google Scholar 

  197. S. Merino, C. Martin, K. Kostarelos, M. Prato and E. Vázquez, Nanocomposite Hydrogels: 3D Polymer– Nanoparticle Synergies for On-Demand Drug Delivery, ACS Nano, 2015, 9, 4686–4697.

    Article  CAS  PubMed  Google Scholar 

  198. R. Ahmad, Y. Deng, R. Singh, M. Hussain, M. A. A. Shah, S. Elingarami, N. He and Y. Sun, Cutting edge protein and carbohydrate-based materials for anticancer drug delivery, J. Biomed. Nanotechnol., 2018, 14, 20–43.

    Article  CAS  PubMed  Google Scholar 

  199. Y. Qiu and K. Park, Environment-sensitive hydrogels for drug delivery, Adv. Drug Delivery Rev., 2001, 53, 321–339.

    Article  CAS  Google Scholar 

  200. L. A. Sharpe, A. M. Daily, S. D. Horava and N. A. Peppas, Therapeutic applications of hydrogels in oral drug delivery, Expert Opin. Drug Delivery, 2014, 11, 901–915.

    CAS  Google Scholar 

  201. D. Gu, A. J. O’Connor, G. G. H. Qiao and K. Ladewig, Hydrogels with smart systems for delivery of hydrophobic drugs, Expert Opin. Drug Delivery, 2017, 14, 879–895.

    CAS  Google Scholar 

  202. K. Rehman and M. H. Zulfakar, Recent advances in gel technologies for topical and transdermal drug delivery, Drug Dev. Ind. Pharm., 2014, 40, 433–440.

    CAS  Google Scholar 

  203. D. Caccavo, S. Cascone, G. Lamberti and A. A. Barba, Controlled drug release from hydrogel-based matrices: experiments and modelling, Int. J. Pharm., 2015, 486, 144–152.

    Article  CAS  PubMed  Google Scholar 

  204. N. Huebsch, C. J. Kearney, X. Zhao, J. Kim, C. A. Cezara, Z. Suo and D. J. Mooney, Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 9762–9767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. N. A. Jalili, M. K. Jaiswal, C. W. Peak, L. M. Cross and A. K. Gaharwar, Injectable nanoengineered stimuli-responsive hydrogels for on-demand and localized therapeutic delivery, Nanoscale, 2017, 9, 15379–15389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. L. Dong, A. K. Agarwal, D. J. Beebe and H. Jiang, Adaptive liquid microlenses activated by stimuli responsive hydrogels, Nature, 2006, 442, 551–554.

    Article  CAS  PubMed  Google Scholar 

  207. A. S. Hoffman, Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation, Adv. Drug Delivery Rev., 2013, 65, 10–16.

    Article  CAS  Google Scholar 

  208. S. D. Fitzpatrick, L. E. Fitzpatrick, A. Thakur, M. A. Mazumder and H. Sheardown, Temperature-sensitive polymers for drug delivery, Expert Rev. Med. Devices, 2012, 9, 339–351.

    Article  CAS  Google Scholar 

  209. Y.-M. Chung, K. L. Simmons, A. Gutowska and B. Jeong, Sol-Gel Transition Temperature of PLGA-g-PEG Aqueous Solutions, Biomacromolecules, 2002, 3, 511–516.

    Article  CAS  PubMed  Google Scholar 

  210. H. G. Schild, Poly(n-isopropylacrylamide): experiment, theory and application, Prog. Polym. Sci., 1992, 17, 163–249.

    CAS  Google Scholar 

  211. S. Ashraf, H. K. Park and S. H. Lee, Snapshot of Phase Transition in Thermoresponsive Hydrogel PNIPAM: Role in Drug Delivery and Tissue Engineering, Macromol. Res., 2016, 24, 297–304.

    CAS  Google Scholar 

  212. X. Ni, A. Cheng and J. Li, Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and a-cyclodextrin, J. Biomed. Mater. Res., Part A, 2009, 88, 1031–1036.

    Article  CAS  Google Scholar 

  213. J. N. Patton and A. F. Palmer, Engineering temperature-sensitive hydrogel nanoparticles entrapping hemoglobin as a novel type of oxygen carrier, Biomacromolecules, 2005, 6, 2204–2212.

    Article  CAS  PubMed  Google Scholar 

  214. M. Li, P. He, S. Li, X. Wang, L. Liu, F. Lv and S. Wang, Oligo(p-phenylenevinylene) Derivative-Incorporated and Enzyme-Responsive Hybrid Hydrogel for Tumor Cell- Specific Imaging and Activatable Photodynamic Therapy, ACS Biomater. Sci. Eng., 2018, 4, 2037–2045.

    CAS  Google Scholar 

  215. H.-H. Wang, Z.-G. Fu, W. Li, Y.-X. Li, L.-S. Zhao, L. Wen, J.-J. Zhang and N. Wen, The synthesis and application of nano doxorubicin-indocyanine green matrix metalloproteinase- responsive hydrogel in chemophototherapy for head and neck squamous cell carcinoma, Int. J. Nanomed., 2019, 14, 623–638.

    Article  CAS  Google Scholar 

  216. T. Alonso, J. Irigoyen, J. J. Iturri, I. L. Larena and S. E. Moya, Study of the multilayer assembly and complex formation of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(acrylic acid) (PAA) as a function of pH, Soft Matter, 2013, 9, 1920–1928.

    Article  CAS  Google Scholar 

  217. N. Sood, A. Bhardwai, S. Mehta and A. Mehta, Stimuli-responsive hydrogels in drug delivery and tissue engineering, Drug Delivery, 2016, 23, 758–780.

    Article  PubMed  CAS  Google Scholar 

  218. L. Ali, M. Ahmad, M. Usman and M. Yousaf, Controlled release of highly water-soluble antidepressant from hybrid copolymer poly (vinyl alcohol) hydrogels, Polym. Bull., 2014, 71, 31–46.

    CAS  Google Scholar 

  219. L. C. Dong and A. S. Hoffman, A novel-approach for preparation of pH sensitive hydrogels for enteric drug delivery, J. Controlled Release, 1991, 15, 141–152.

    Article  CAS  Google Scholar 

  220. N. A. Peppas and J. Klier, Controlled release by using poly (methacrylic acid-g-ethylene glycol) hydrogels, J. Controlled Release, 1991, 16, 203–214.

    Article  CAS  Google Scholar 

  221. V. Alzari, D. Nuvoli, R. Sanna, L. Peponi, M. Piccinini, S. B. Bon, S. Marceddu, L. Valentini, J. M. Kenny and A. Mariani, Multistimuli-responsive hydrogels of poly(2- acrylamido-2-methyl-1-propanesulfonic acid) containing graphene, Colloid Polym. Sci., 2013, 291, 2681–2687.

    Article  CAS  Google Scholar 

  222. A. Singh, O. Kuksenck and A. C. Balazs, Embedding flexible fibers into responsive gels to create composites with controllable dexterity, Soft Matter, 2016, 12, 9170–9184.

    Article  CAS  PubMed  Google Scholar 

  223. S. Belali, A. R. Karimi and M. Hadizadeh, Novel nanostructured smart, photodynamic hydrogels based on poly (N-isopropylacrylamide) bearing porphyrin units in their crosslink chains: A potential sensitizer system in cancer therapy, Polymer, 2017, 109, 93–105.

    Article  CAS  Google Scholar 

  224. Z. S. Akdemir and N. Kayaman-Apohan, Investigation of swelling, drug release and diffusion behaviors of poly (N-isopropylacrylamide)/poly(N-vinylpyrrolidone) full-IPN hydrogels, Polym. Adv. Technol., 2007, 18, 932–939.

    CAS  Google Scholar 

  225. T. L. Porter, R. Stewart, J. Reed and K. Morton, Models of hydrogel swelling with applications to hydration sensing, Sensors, 2007, 7, 1980–1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. B.-S. Kim and D. J. Mooney, Development of biocompatible synthetic extracellular matrices for tissue engineering, Trends Biotechnol., 1998, 16, 224–229.

    Article  CAS  PubMed  Google Scholar 

  227. J. K. Kular, S. Basu and R. I. Sharma, The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering, J. Tissue Eng., 2014, 5, 1–17.

    Article  Google Scholar 

  228. M. Bessodes, A. K. A. Silva, D. Scherman, O.-W. Merten and C. Richard, Growth Factor Delivery Approaches in Hydrogels, Biomacromolecules, 2008, 10, 9–18.

    Google Scholar 

  229. J. J. Marler, J. Upton, R. Langer and J. P. Vacanti, Transplantation of cells in matrices for tissue regeneration, Adv. Drug Delivery Rev., 1998, 33, 165–182.

    Article  CAS  Google Scholar 

  230. C. S. Osborne, W. H. Reid and M. H. Grant, Investigation into the biological stability of collagen/chondroitin-6- sulphate gels and their contraction by fibroblasts and keratinocytes: the effect of crosslinking agents and diamines, Biomaterials, 1999, 20, 283–290.

    Article  CAS  PubMed  Google Scholar 

  231. T. Rajangam and S. S. An, Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications, Int. J. Nanomed., 2013, 8, 3641–3662.

    Google Scholar 

  232. S. J. Bidarra, C. C. Barrias and P. L. Granja, Injectable alginate hydrogels for cell delivery in tissue engineering, Acta Biomater., 2014, 10, 1646–1662.

    Article  CAS  PubMed  Google Scholar 

  233. J. Nilsen-Nygaard, S. P. Strand, K. M. Vårum, K. I. Draget and C. T. Nordgård, Chitosan: Gels and Interfacial Properties, Polymers, 2015, 7, 552–579.

    Article  CAS  Google Scholar 

  234. K. Y. Lee and D. J. Mooney, Hydrogels for Tissue Engineering, Chem. Rev., 2001, 7, 1869–1878.

    Article  CAS  Google Scholar 

  235. E. S. Dragan, Design and applications of interpenetrating polymer network hydrogels, Chem. Eng. J., 2014, 243, 572–590.

    Article  CAS  Google Scholar 

  236. A. Subramanium, D. Vu, G. F. Larsen and H.-Y. Lin, Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering, J. Biomater. Sci., Polym. Ed., 2005, 16, 861–873.

    Article  Google Scholar 

  237. K. B. Gudasi, R. S. Vadavi, B. Sreedhar, M. Sairam, N. B. Shelke, N. N. Mallikarjuna, P. V. Kulkarni and T. M. Aminahbavi, Synthesis and characterization of some organopolyphosphazenes and their controlled release characteristics, Des. Monomers Polym., 2007, 10, 235–235.

    Article  CAS  Google Scholar 

  238. H. H. G. Song, K. M. Park and S. Gerecht, Hydrogels to model 3D in vitro microenvironment of tumor vascularization, Adv. Drug Delivery Rev., 2014, 7980, 19–29.

    Article  CAS  Google Scholar 

  239. T. C. Tseng, L. Tao, F. Y. Hsieh, Y. Wei, I. M. Chiu and S. H. Hsu, An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System, Adv. Mater., 2015, 27, 3518–3524.

    CAS  Google Scholar 

  240. P. Worthington, D. J. Pochan and S. A. Langhans, Peptide Hydrogels - Versatile Matrices for 3D Cell Culture in Cancer Medicine, Front. Oncol., 2015, 5, 92.

    Google Scholar 

  241. S. Park and K. M. Park, Engineered Polymeric Hydrogels for 3D Tissue Models, Polymers, 2016, 8, 23.

    Article  PubMed Central  CAS  Google Scholar 

  242. J. Hoarau-Véchot, A. Rafii, C. Touboul and J. Pasquier, Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancer-microenvironment interactions?, Int. J. Mol. Sci., 2018, 19, 181.

    Article  PubMed Central  CAS  Google Scholar 

  243. H. K. Lau and K. L. Kiick, Opportunities for Multicomponent Hybrid Hydrogels in Biomedical Applications, Biomaterials, 2015, 16, 28–42.

    CAS  Google Scholar 

  244. N. P. Murphy and K. J. Lampe, Mimicking biological phenomena in hydrogel-based biomaterials to promote dynamic cellular responses, J. Mater. Chem. B, 2015, 3, 7867–7880.

    Article  CAS  PubMed  Google Scholar 

  245. S. M. Jay and W. M. Saltzman, Shining light on a new class of hydrogels, Nat. Biotechnol., 2009, 27, 543–544.

    Article  CAS  PubMed  Google Scholar 

  246. A. M. Kloxin, A. M. Kasko, C. N. Salinas and K. S. Anseth, Photodegradable hydrogels for dynamic tuning of physical and chemical properties, Science, 2009, 324, 59–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. A. N. Shipway and I. Willner, Nanoparticles as structural and functional units in surface-confined architectures, Chem. Commun., 2001, 2035–2045.

  248. R. Suntornnond, J. An and C. K. Chua, Bioprinting of Thermoresponsive Hydrogels for Next Generation Tissue Engineering: A Review, Macromol. Mater. Eng., 2017, 302, 1600266.

    Google Scholar 

  249. A. Martinez de Pinillos Bayona, J. H. Woodhams, H. Pye, R. A. Hamoudi, C. M. Moore and A. J. MacRobert, Efficacy of photochemical internalisation using disulfonated chlorin and porphyrin photosensitisers: An in vitro study in 2D and 3D prostate cancer models, Cancer Lett., 2017, 393, 68–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. H. Geckil, F. Xu, X. Zhang, S. Moon and U. Demirci, Engineering Hydrogels as Extracellular Matrix Mimics, Nanomedicine, 2010, 5, 469–484.

    Article  CAS  PubMed  Google Scholar 

  251. M. P. Lutolf and J. A. Hubbell, Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morphogenesis in Tissue Engineering, Nat. Biotechnol., 2005, 23, 47–55.

    Article  CAS  PubMed  Google Scholar 

  252. A. M. Rosales and K. S. Anseth, The Design of Reversible Hydrogels to Capture Extracellular Matrix Dynamics, Nat. Rev. Mater., 2016, 1, 15012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. J. N. Beck, A. Singh, A. R. Rothenberg, J. H. Elisseeff and A. J. Ewald, The Independent Roles of Mechanical, Structural and Adhesion Characteristics of 3D Hydrogels on the Regulation of Cancer Invasion and Dissemination, Biomaterials, 2013, 34, 9486–9495.

    Article  CAS  PubMed  Google Scholar 

  254. S. Gerecht, J. A. Burdick, L. S. Ferreira, S. A. Townsend, R. Langer and G. Vunjak-Novakovic, Hyaluronic Acid Hydrogel for Controlled Self-Renewal and Differentiation of Human Embryonic Stem Cells, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 11298–11303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. B. K. Mann, A. S. Gobin, A. T. Tsai, R. H. Schmedlen and J. L. West, Smooth Muscle Cell Growth in Photopolymerized Hydrogels with Cell Adhesive and Proteolytically Degradable Domains: Synthetic ECM Analogs for Tissue Engineering, Biomaterials, 2001, 22, 3045–3051.

    Article  CAS  PubMed  Google Scholar 

  256. S. Cai, Y. Liu, X. Zheng Shu and G. D. Prestwich, Injectable Glycosaminoglycan Hydrogels for Controlled Release of Human Basic Fibroblast Growth Factor, Biomaterials, 2005, 26, 6054–6067.

    Article  CAS  PubMed  Google Scholar 

  257. J. H. Sung and M. L. Shuler, A Micro Cell Culture Analog (MCCA) with 3-D Hydrogel Culture of Multiple Cell Lines to Assess Metabolism-Dependent Cytotoxicity of Anti- Cancer Drugs, Lab Chip, 2009, 9, 1385–1394.

    Article  CAS  PubMed  Google Scholar 

  258. A. Desai, W. S. Kisaalita, C. Keith and Z.-Z. Wu, Human Neuroblastoma (SH-SY5Y) Cell Culture and Differentiation in 3-D Collagen Hydrogels for Cell-Based Biosensing, Biosens. Bioelectron., 2006, 21, 1483–1492.

    Article  CAS  Google Scholar 

  259. C. A. Goubko, A. Basak, S. Majumdar and X. Cao, Dynamic Cell Patterning of Photoresponsive Hyaluronic Acid Hydrogels, J. Biomed. Mater. Res., Part A, 2014, 102, 381–391.

    Article  CAS  Google Scholar 

  260. L. A. Lee and Q. Wang, Dynamic 3D Patterning of Biochemical Cues by Using Photoinduced Bioorthogonal Reactions, Angew. Chem., Int. Ed., 2012, 51, 4004–4005.

    Article  CAS  Google Scholar 

  261. R. Y. Tam, L. J. Smith and M. S. Shoichet, Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models, Acc. Chem. Res., 2017, 50, 703–713.

    Article  CAS  PubMed  Google Scholar 

  262. T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear and J. M. DeSimone, Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 586–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. S. Kim, Z.-K. Cui, P. J. Kim, L. Y. Jung and M. Lee, Design of Hydrogels to Stabilize and Enhance Bone Morphogenetic Protein Activity by Heparin Mimetics, Acta Biomater., 2018, 72, 45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. P. Maturavongsadit, J. A. Luckanagul, K. Metavarayuth, X. Zhao, L. Chen, Y. Lin and Q. Wang, Promotion of In Vitro Chondrogenesis of Mesenchymal Stem Cells Using In Situ Hyaluronic Hydrogel Functionalized with Rod-Like Viral Nanoparticles, Biomacromolecules, 2016, 17, 1930–1938.

    Article  CAS  PubMed  Google Scholar 

  265. N. G. Avci, Y. Fan, A. Dragomir, Y. M. Akay, C. Gomez- Manzano, J. Fueyo-Margareto and M. Akay, Delta-24-RGD Induces Cytotoxicity of Glioblastoma Spheroids in Three Dimensional PEG Microwells, IEEE Trans. Nanobioscience, 2015, 14, 946–951.

    Article  PubMed  Google Scholar 

  266. J. J. Green and J. H. Elisseeff, Mimicking Biological Functionality with Polymers for Biomedical Applications, Nature, 2016, 540, 386–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. X. Zhao, Y. Lin and Q. Wang, Virus-Based Scaffolds for Tissue Engineering Applications, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2015, 7, 534–547.

    Article  CAS  Google Scholar 

  268. P. Sitasuwan, L. A. Lee, P. Bo, E. N. Davis, Y. Lin and Q. Wang, A Plant Virus Substrate Induces Early Upregulation of BMP2 for Rapid Bone Formation, Integr. Biol., 2012, 4, 651–660.

    CAS  Google Scholar 

  269. I. Lauria, C. Dickmeis, J. Röder, M. Beckers, S. Rütten, Y. Y. Lin, U. Commandeur and H. Fischer, Engineered Potato Virus X Nanoparticles Support Hydroxyapatite Nucleation for Improved Bone Tissue Replacement, Acta Biomater., 2017, 62, 317–327.

    Article  CAS  PubMed  Google Scholar 

  270. P. Maturavongsadit, X. Bi, K. Metavarayuth, J. A. Luckanagul and Q. Wang, Influence of Cross-Linkers on the in Vitro Chondrogenesis of Mesenchymal Stem Cells in Hyaluronic Acid Hydrogels, ACS Appl. Mater. Interfaces, 2017, 9, 3318–3329.

    CAS  Google Scholar 

  271. X. Bi, P. Maturavongsadit, Y. Tan, M. Watts, E. Bi, Z. Kegley, S. Morton, L. Lu, Q. Wang and A. Liang, Polyamidoamine Dendrimer-PEG Hydrogel and Its Mechanical Property on Differentiation of Mesenchymal Stem Cells, Biomed. Mater. Eng., 2019, 30, 111–123.

    CAS  PubMed  Google Scholar 

  272. L. Yang, A. Liu, M. V. De Ruiter, C. A. Hommersom, N. Katsonis, P. Jonkheijm and J. J. L. M. Cornelissen, Compartmentalized supramolecular hydrogels based on viral nanocages towards sophisticated cargo administration, Nanoscale, 2018, 10, 4123–4129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. C. Xu, S. Hu and X. Chen, Artificial cells: from basic sciences to applications, Mater. Today, 2016, 19, 516–532.

    CAS  Google Scholar 

  274. R. Haghgooie, M. Toner and P. S. Doyle, Squishy non-spherical hydrogel microparticles, Macromol. Rapid Commun., 2010, 31, 128–134.

    CAS  Google Scholar 

  275. T. J. Merkel, K. Chen, S. W. Jones, A. A. Pandya, S. Tian, M. E. Napier, W. E. Zamboni and J. M. DeSimone, The Effect of Particle Size on the Biodistribution of Low- Modulus Hydrogel PRINT Particles, J. Controlled Release, 2012, 162, 37–44.

    Article  CAS  Google Scholar 

  276. K. Chen, T. J. Merkel, A. Pandya, M. E. Napier, J. C. Luft, W. Daniel, S. Sheiko and J. M. DeSimone, Low Modulus Biomimetic Microgel Particles with High Loading of Hemoglobin, Biomacromolecules, 2012, 13, 2748–2759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Y. Dong, G. Jin, Y. Hong, H. Zhu, T. J. Lu, F. Xu, D. Bai and M. Lin, Engineering the Cell Microenvironment Using Novel Photoresponsive Hydrogels, ACS Appl. Mater. Interfaces, 2018, 10, 12374–12389.

    CAS  Google Scholar 

  278. E. S. Lee, D. Kim, Y. S. Youn, K. T. Oh and Y. H. Bae, A Virus-Mimetic Nanogel Vehicle, Angew. Chem., Int. Ed., 2008, 47, 2418–2421.

    Article  CAS  Google Scholar 

  279. C. Decker, Photoinitiated crosslinking polymerization, Prog. Polym. Sci., 1996, 21, 593–650.

    CAS  Google Scholar 

  280. J. He, X. Tong and Y. Zhao, Photoresponsive nanogels based on photocontrollable cross-links, Macromolecules, 2009, 42, 4845–4852.

    Article  CAS  Google Scholar 

  281. H. Yamaguchi, Y. Kobayashi, R. Kobayashi, Y. Takashima, A. Hashidzume and A. Harada, Photoswitchable gel assembly based on molecular recognition, Nat. Commun., 2012, 3, 603–605.

    Article  PubMed  CAS  Google Scholar 

  282. K. Peng, I. Tomatsu and A. Kros, Light controlled protein release from a supramolecular hydrogel, Chem. Commun., 2010, 46, 4094–4096.

    Article  CAS  Google Scholar 

  283. M. Yamada, M. Kondo, J. I. Mamiya, Y. Yu, M. Kinoshita, C. J. Barrett and T. Ikeda, Photomobile polymer materials: Towards light-driven plastic motors, Angew. Chem., Int. Ed., 2008, 47, 4986–4988.

    Article  CAS  Google Scholar 

  284. F. Zhao, A. Bonasera, U. Nöchel, M. Behl and D. Bléger, Reversible Modulation of Elasticity in Fluoroazobenzene- Containing Hydrogels Using Green and Blue Light, Macromol. Rapid Commun., 2018, 39, 1700527.

    Google Scholar 

  285. E. C. Hagberg, M. Malkoch, Y. Ling, C. J. Hawker and K. R. Carter, Effects of modulus and surface chemistry of thiol-ene photopolymers in nanoimprinting, Nano Lett., 2007, 7, 233–237.

    Article  CAS  PubMed  Google Scholar 

  286. P. Bharmoria, S. Hisamitsu, H. Nagatomi, T. Ogawa, M. Morikawa, N. Yanai and N. Kimizuka, Simple and Versatile Platform for Air-Tolerant Photon Upconverting Hydrogels by Biopolymer–Surfactant–Chromophore Co-assembly, J. Am. Chem. Soc., 2018, 140, 10848–10855.

    Article  CAS  PubMed  Google Scholar 

  287. Y. Zheng, M. Micic, S. V. Mello, M. Mabrouki, F. M. Andreopoulos, V. Konka, S. M. Pham and R. M. Leblanc, PEG-based hydrogel synthesis via the photodimerization of anthracene groups, Macromolecules, 2002, 35, 5228–5234.

    Article  CAS  Google Scholar 

  288. D. S. Shin, J. You, A. Rahimian, T. Vu, C. Siltanen, A. Ehsanipour, G. Stybayeva, J. Sutcliffe and A. Revzin, Photodegradable hydrogels for capture, detection, and release of live cells, Angew. Chem., Int. Ed., 2014, 53, 8221–8224.

    Article  CAS  Google Scholar 

  289. M. B. Bakar, M. Oelgemöller and M. O. Senge, Lead structures for applications in photodynamic therapy. Part 2: Synthetic studies for photo-triggered release systems of bioconjugate porphyrin photosensitizers, Tetrahedron, 2009, 65, 7064–7078.

    Article  CAS  Google Scholar 

  290. Y. Luo and M. S. Shoichet, A photolabile hydrogel for guided three-dimensional cell growth and migration, Nat. Mater., 2004, 3, 249–253.

    Article  CAS  PubMed  Google Scholar 

  291. J. A. Johnson, J. M. Baskin, C. R. Bertozzi, J. D. Koberstein and N. J. Turro, Copper-free click chemistry for the in situ crosslinking of photodegradable star polymers, Chem. Commun., 2008, 5, 3064–3066.

    Article  CAS  Google Scholar 

  292. B. D. Polizzotti, B. D. Fairbanks and K. S. Anseth, Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization, Biomacromolecules, 2008, 9, 1084–1087.

    Article  CAS  PubMed  Google Scholar 

  293. M. Lunzer, L. Shi, O. G. Andriotis, P. Gruber, M. Markovic, P. J. Thurner, D. Ossipov, R. Liskaa and A. Ovsianikov, A Modular Approach to Sensitized Two-Photon Patterning of Photodegradable Hydrogels, Angew. Chem., Int. Ed., 2018, 57, 15122–15127.

    Article  CAS  Google Scholar 

  294. Z. Cheng, R. Chai, P. Ma, Y. Dai, X. Kang, H. Lian, Z. Hou, C. Li and J. Lin, Multiwalled Carbon Nanotubes and NaYF4:Yb3+/Er3+ Nanoparticle-Doped Bilayer Hydrogel for Concurrent NIR-Triggered Drug Release and Up- Conversion Luminescence Tagging, Langmuir, 2013, 29, 9573–9580.

    Article  CAS  PubMed  Google Scholar 

  295. J. A. Johnson, N. J. Turro, J. T. Koberstein and J. E. Mark, Some hydrogels having novel molecular structures, Prog. Polym. Sci., 2010, 35, 332–337.

    CAS  Google Scholar 

  296. S. J. Buwalda, T. Vermonden and W. E. Hennink, Hydrogels for Therapeutic Delivery: Current Developments and Future Directions, Biomacromolecules, 2017, 18, 316–330.

    Article  CAS  PubMed  Google Scholar 

  297. S. Vishnubhakthula, R. Elupula and E. F. Durán-Lara, Recent Advances in Hydrogel-Based Drug Delivery for Melanoma Cancer Therapy: A Mini Review, J. Drug Delivery, 2017, 2017, 7275985.

    Google Scholar 

  298. T. Harada, D.-T. Pham, S. F. Lincoln and T. W. Kee, The Capture and Stabilization of Curcumin Usinig Hydrophobically Modified Polyacrylate Aggregates and Hydrogels, J. Phys. Chem. B, 2014, 118, 9515–9523.

    Article  CAS  PubMed  Google Scholar 

  299. B. K. Jung, E. Oh, J. W. Hong, Y. Lee, K. D. Park and C. O. Yun, A hydrogel matrix prolongs persistence and promotes specific localization of an oncolytic adenovirus in a tumor by restricting nonspecific shedding and an antiviral immune response, Biomaterial, 2017, 147, 26–38.

    Article  CAS  Google Scholar 

  300. W. Huang, N. Zhang, H. Hua, T. Liu, Y. Tang, L. Fu, Y. Yang, X. Ma and Y. Zhao, Preparation, pharmacokinetics and pharmacodynamics of ophthalmic thermosensitive in situ hydrogel of betaxolol hydrochloride, Biomed. Pharmacother., 2016, 83, 107–113.

    Article  CAS  Google Scholar 

  301. N. A. Peppas, J. Z. Hilt, A. Khademhosseini and R. Langer, Hydrogels in biology and medicine: From molecular principles to bionanotechnology, Adv. Mater., 2006, 18, 1345–1360.

    CAS  Google Scholar 

  302. D. E. Soranno, C. B. Rodell, C. Altmann, J. Duplantis, A. Andres-Hernando, J. A. Burdick and S. Faubel, Delivery of interleukin-10 via injectable hydrogels improves renal outcomes and reduces systemic inflammation following ischemic acute kidney injury in mice, Am. J. Physiol.: Renal., Physiol., 2016, 311, F362–F372.

    CAS  Google Scholar 

  303. E. P. Porcu, A. Salis, E. Gavini, G. Rassu, M. Maestri and P. Giunchedi, Indocyanine green delivery systems for tumour detection and treatments, Biotechnol. Adv., 2016, 34, 768–789.

    Article  CAS  PubMed  Google Scholar 

  304. H. Maeda, J. Wu, T. Sawa, Y. Matsumura and K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, J. Controlled Release, 2000, 65, 271–284.

    Article  CAS  Google Scholar 

  305. M. Ghorbani and H. Hamishehkar, Redox-responsive smart nanogels for intracellular targeting of therapeutic agents: applications and recent advances, J. Drug Targeting, 2018, 27, 408–422.

    Article  Google Scholar 

  306. W. Tang, H. Xu, R. Kopelman and M. A. Philbert, Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms, Photochem. Photobiol., 2005, 81, 242–249.

    Article  CAS  Google Scholar 

  307. W. Tang, H. Xu, E. J. Park, M. A. Philbert and R. Kopelman, Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness, Biochem. Biophys. Res. Commun., 2008, 369, 579–583.

    CAS  Google Scholar 

  308. H. J. Hah, G. Kim, Y. E. K. Lee, D. A. Orringer, O. Sagher, M. A. Philbert and R. Kopelman, Methylene Blue-Conjugated Hydrogel Nanoparticles and Tumor-Cell Targeted Photodynamic Therapy, Macromol. Biosci., 2011, 11, 90–99.

    CAS  Google Scholar 

  309. M. Qin, H. J. Hah, G. Kim, G. Nie, Y. E. K. Lee and R. Kopelman, Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy, Photochem. Photobiol. Sci., 2011, 10, 832–841.

    Article  CAS  Google Scholar 

  310. A. Khdair, G. Gerard, H. Handa, G. Mao, M. P. V. Shekhar and J. Panyam, Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy, Mol. Pharm., 2008, 5, 795–807.

    CAS  Google Scholar 

  311. A. Khdair, H. Handa, G. Z. Mao and J. Panyam, Nanoparticle mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro, Eur. J. Pharm. Biopharm., 2009, 71, 214–222.

    Article  CAS  PubMed  Google Scholar 

  312. M. Kurisawa, J. E. Chung, Y. Y. Yang, S. J. Gao and H. Uyama, Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering, Chem. Commun., 2005, 4312–4314.

  313. R. Jin, B. Lou and C. Lin, Tyrosinase-mediated in situ forming hydrogels from biodegradable chondroitin sulfate-tyramine conjugates, Polym. Int., 2013, 62, 353–361.

    CAS  Google Scholar 

  314. M. Fadel, M. Salah, N. Samy and M. Soliman, Liposomal methylene blue hydrogel for selective photodynamic therapy of acne vulgaris, J. Drugs Dermatol., 2009, 8, 983–990.

    PubMed  Google Scholar 

  315. N. H. Moftah, S. M. Ibrahim and N. H. Wahba, Intense pulsed light versus photodynamic therapy using liposomal methylene blue gel for the treatment of truncal acne vulgaris: a comparative randomized split body study, Arch. Dermatol. Res., 2016, 308, 263–268.

    CAS  Google Scholar 

  316. M. Salah, N. Samy and M. Fadel, Methylene blue mediated photodynamic therapy for resistant plaque psoriasis, J. Drugs Dermatol., 2009, 8, 42–49.

    PubMed  Google Scholar 

  317. N. A. Samy, M. M. Salah, M. F. Ali and A. M. Sadek, Effect of methylene blue-mediated photodynamic therapy for treatment of basal cell carcinoma, Lasers Med. Sci., 2014, 30, 109–115.

    Google Scholar 

  318. M. Fadel, G. Abdelbary and S. F. Elmenshawe, EissaToluidine blue loaded transferosomes for topical photodynamic therapy: Formulation and characterization, Int. J. Res. Pharm. Sci., 2011, 2, 537–544.

    Google Scholar 

  319. P.-C. Peng, C.-M. Hsieh, C.-P. Chen, T. Tsai and C.-T. Chen, Assessment of Photodynamic Inactivation against Periodontal Bacteria Mediated by a Chitosan Hydrogel in a 3D Gingival Model, Int. J. Mol. Sci., 2016, 17, 1821.

    Article  PubMed Central  CAS  Google Scholar 

  320. H. Liang, J. Xu, Y. Liu, J. Zhang, W. Peng, J. Yan, Z. Li and Q. Li, Optimization of hydrogel containing toluidine blue O for photodynamic therapy by response surface methodology, J. Photochem. Photobiol., B, 2017, 173, 389–396.

    Article  CAS  Google Scholar 

  321. E. Wachter, C. Dees, J. Harkins, T. Scott, M. Petersen, R. E. Rush and A. Cada, Topical rose bengal: Pre-clinical evaluation of pharmacokinetics and safety, Lasers Surg. Med., 2003, 32, 101–110.

    Article  PubMed  Google Scholar 

  322. M. F. M. Ali, Topical delivery and photodynamic evaluation of a multivesicular liposomal Rose Bengal, Lasers Med. Sci., 2011, 26, 267–275.

    Article  PubMed  Google Scholar 

  323. N. Samy and M. Fadel, Topical liposomal Rose bengal for photodynamic white hair removal: Randomized, controlled, double-blind study, J. Drugs Dermatol., 2014, 13, 436–442.

    PubMed  Google Scholar 

  324. C. Du, J. Zhao, J. Fei, L. Gao, W. Cui, Y. Yang and J. Li, Alginate-based microcapsules with a molecule recognition linker and photosensitizer for the combined cancer treatment, Chem. - Asian J., 2013, 8, 736–742.

    Article  CAS  PubMed  Google Scholar 

  325. D. Kessel, Hematoporphyrin and HPD: Photophysics, Photochemistry and Phototherapy, Photochem. Photobiol., 1984, 39, 851–859.

    Article  CAS  Google Scholar 

  326. C. J. Rogers, T. J. Dickerson, P. Wentworth Jr. and K. D. Janda, A high-swelling reagent scaffold suitable for use in aqueous and organic solvents, Tetrahedron, 2005, 61, 12140–12144.

    Article  CAS  Google Scholar 

  327. Q. Peng, T. Warlo, K. Berg, J. Moan, M. Kongshaug, K.-E. Giercksky and J. M. Nesland, 5-Aminolevulinic acid-based photodynamic therapy, Cancer, 1997, 79, 2282–2308.

    Article  CAS  PubMed  Google Scholar 

  328. X. Ye, H. Yin, Y. Lu, H. Zhang and H. Wang, Evaluation of Hydrogel Suppositories for Delivery of 5-Aminolevulinic Acid and Hematoporphyrin Monomethyl Ether to Rectal Tumors, Molecules, 2016, 21, 1347.

    Article  PubMed Central  CAS  Google Scholar 

  329. S. Collaud, Q. Peng, R. Gurny and N. Lange, Thermosetting Gel for the Delivery of 5-Aminolevulinic Acid Esters to the Cervix, J. Pharm. Sci., 2008, 97, 2680–2690.

    Article  CAS  PubMed  Google Scholar 

  330. V. Andikyan, M. Kronschnabl, M. Hillemanns, X. Wang, H. Stepp and P. Hillemanns, Fluoreszenzdiagnostik mit 5-ALA-Thermogel bei zervikaler intraepithelialer Neoplasie, Gynakol. Geburtshilfliche Rundsch., 2004, 44, 31–37.

    Article  Google Scholar 

  331. P. Hillemanns, X. Wang, H. Hertel, V. Andikyan, M. Hillemanns, H. Stepp and P. Soergel, Pharmacokinetics and selectivity of porphyrin synthesis after topical application of hexaminolevulinate in patients with cervical intraepithelial neoplasia, Am. J. Obstet. Gynecol., 2008, 198, 300.e100.e1–7.

    Google Scholar 

  332. R. F. Donnelly, D. I. J. Morrow, M. T. C. McCrudden, A. Z. Alkilani, E. M. V. Perez, C. O’Mahony, P. Gonzalez- Vazquez, P. A. McCarron and A. D. Woolfson, Hydrogel-forming and dissolving microneedles for enhanced delivery of photosensitizers and precursors, Photochem. Photobiol., 2014, 90, 641–647.

    Article  CAS  Google Scholar 

  333. S. Protti, A. Albini, R. Viswanathan and A. Greer, Targeting Photochemical Scalpels or Lancets in the Photodynamic Therapy Field—The Photochemist’s Role, Photochem. Photobiol., 2017, 93, 1139–1153.

    Article  CAS  Google Scholar 

  334. E. Larrañet, R. E. M. Lutton, A. D. Woolfson and R. F. Donnelly, Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development, Mater. Sci. Eng. R. Rep., 2016, 104, 1–32.

    Article  Google Scholar 

  335. S. Henry, D. V. McAllister, M. G. Allen and M. R. Prausnitz, Microfabricated Microneedles: A Novel Approach to Transdermal Drug Delivery, J. Pharm. Sci., 1998, 87, 922–925.

    Article  CAS  PubMed  Google Scholar 

  336. R. F. Donnelly, D. I. J. Morrow, P. A. McCarron, A. D. Woolfson, A. Morrissey, P. Juzenas, A. Juzeniene, V. Iani, H. O. McCarthy and J. Moan, Microneedle- Mediated Intradermal Delivery of 5-Aminolevulinic Acid: Potential for Enhanced Topical Photodynamic Therapy, J. Controlled Release, 2008, 129, 154–162.

    Article  CAS  Google Scholar 

  337. S. Chandrasekaran, J. D. Brazzle and A. B. Frazier, Surface Micromachined Metallic Microneedles, J. Microelectromech. Syst., 2003, 12, 281–288.

    Article  Google Scholar 

  338. J.-H. Park, M. G. Allen and M. R. Prausnitz, Biodegradable Polymer Microneedles: Fabrication, Mechanics and Transdermal Drug Delivery, J. Controlled Release, 2005, 104, 51–66.

    Article  CAS  Google Scholar 

  339. T.-M. Tuan-Mahmood, M. T. C. McCrudden, B. M. Torrisi, E. McAlister, M. J. Garland, T. R. R. Singh and R. F. Donnelly, Microneedles for Intradermal and Transdermal Drug Delivery, Eur. J. Pharm. Sci., 2013, 50, 623–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. M.-C. Kearney, S. Brown, M. T. C. McCrudden, A. J. Brady and R. F. Donnelly, Potential of Microneedles in Enhancing Delivery of Photosensitising Agents for Photodynamic Therapy, Photodiagn. Photodyn. Ther., 2014, 11, 459–466.

    Article  CAS  Google Scholar 

  341. M. Ventre, V. Coppola, M. Iannone, P. A. Netti, I. Tekko, E. Larrañeta, A. M. Rodgers, C. J. Scott, A. Kissenpfennig, R. F. Donnelly, S. Maher, D. Losic, A. George and A. Ramachandran, Nanotechnologies for Tissue Engineering and Regeneration in Nanotechnologies in Preventive and Regenerative Medicine, ed, V. Uskoković and D. P. Uskoković, Elsevier, Dordrecht, 2018, pp. 93–206.

  342. R. F. Donnelly, T. R. R. Singh, M. J. Garland, K. Migalska, R. Majithiya, M. T. C. McCrudden, P. L. Kole, T. M. T. Mahmood, H. O. McCarthy and A. D. Woolfson, Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery, Adv. Funct. Mater., 2012, 22, 4879–4890.

    CAS  Google Scholar 

  343. A. J. Courtenay, A. M. Rodgers, M. T. C. McCrudden, H. O. McCarthy and R. F. Donnelly, Novel Hydrogel- Forming Microneedle Array for Intradermal Vaccination in Mice Using Ovalbumin as a Model Protein Antigen, Mol. Pharm., 2019, 16, 118–127.

    CAS  Google Scholar 

  344. D. P. Wermeling, S. L. Banks, D. A. Hudson, H. S. Gill, J. Gupta, M. R. Prausnitz and A. L. Stinchcomb, Microneedles Permit Transdermal Delivery of a Skin- Impermeant Medication to Humans, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 2058–2063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. G. Zampini, L. Tarpani, G. Massaro, M. Gambucci, E. Peli and L. Latterini, Controlled Assembly of Metal Colloids on Dye-Doped Silica Particles to Tune the Photophysical Properties of Organic Molecules, Photochem. Photobiol. Sci., 2018, 17, 995–1002.

    CAS  Google Scholar 

  346. S. M. Abdelghany, D. Schmid, J. Deacon, J. Jaworski, F. Fay, K. M. McLaughlin, J. A. Gormley, J. F. Burrows, D. B. Longley, F. R. Donnelly and C. J. Scott, Enhanced antitumor activity of the photosensitizer meso-tetra(N-methyl- 4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles, Biomacromolecules, 2013, 14, 302–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. L. Y. Xia, X. Zhang, M. Cao, Z. Chen and F. G. Wu, Enhanced Fluorescence Emission and Singlet Oxygen Generation of Photosensitizers Embedded in Injectable Hydrogels for Imaging-Guided Photodynamic Cancer Therapy, Biomacromolecules, 2017, 18, 3073–3081.

    Article  CAS  PubMed  Google Scholar 

  348. J. A. González-Delgado, P. M. Castro, A. Machado, F. Araújo, F. Rodrigues, B. Korsak, M. Ferreira, J. P. C. Tomé and B. Sarmento, Hydrogels containing porphyrin- loaded nanoparticles for topical photodynamic applications, Int. J. Pharm., 2016, 510, 221–231.

    Article  PubMed  CAS  Google Scholar 

  349. R. M. Ion and S. C. F. Patachia, TPPS4 Controlled Release from PVA Hydrogels in Photodynamic Therapy, in International Conference on Advancements of Medicine and Health Care through Technology, ed. S. Vlad and R. V. Ciupa, Springer, Cham, IFMBE Proc., 2014, vol. 44, pp. 307–310.

  350. M. Reza Saboktakin, R. M. Tabatabaie, A. Maharramov and M. A. Ramazanov, Synthesis and in vitro studies of biodegradable modified chitosan nanoparticles for photodynamic treatment of cancer, Int. J. Biol. Macromol., 2011, 49, 1059–1065.

    Article  CAS  PubMed  Google Scholar 

  351. M. R. Saboktakin, R. M. Tabatabaie, P. Ostovarazar, A. Maharramov and M. A. Ramazanov, Synthesis and characterization of modified starch hydrogels for photodynamic treatment of cancer, Int. J. Biol. Macromol., 2012, 51, 544–549.

    Article  CAS  PubMed  Google Scholar 

  352. S. Belali, A. R. Karimi and M. Hadizadeh, Cell-specific and pH-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy, Int. J. Biol. Macromol., 2018, 110, 437–448.

    Article  CAS  PubMed  Google Scholar 

  353. H. Jin, X.-H. Dai, C. Wu, J.-M. Pan, X.-H. Wang, Y.-S. Yan, D.-M. Liu and L. Sun, Rational design of shear-thinning supramolecular hydrogels with porphyrin for controlled chemotherapeutics release and photodynamic therapy, Eur. Polym. J., 2015, 66, 149–159.

    Article  CAS  Google Scholar 

  354. B. Říhová, N. L. Krinick and J. Kopeček, Targetable photoactivatable drugs. 3. In vitro efficacy of polymer bound chlorin e6 toward human hepatocarcinoma cell line (PLC/PRF/S) targeted with galactosamine and to mouse splenocytes targeted with anti-Thy 1.2 antibodies, J. Controlled Release, 1993, 25, 71–87.

    Article  Google Scholar 

  355. J.-G. Shiah, Č. Koňák, J. D. Spikes and J. Kopeček, Solution and photoproperties of N-(2-hydroxypropyl) methacrylamide copolymer–meso-chlorin e6 conjugates, J. Phys. Chem. B, 1997, 101, 6803–6809.

    Article  CAS  Google Scholar 

  356. J.-G. Shiah, Č. Koňák, J. D. Spikes and J. Kopeček, Influence of pH on aggregation and photoproperties of N- (2-hydroxypropyl)methacrylamide copolymer–mesochlorin e6 conjugates, Drug Delivery, 1998, 5, 119–126.

    Article  CAS  PubMed  Google Scholar 

  357. C. M. Peterson, J. M. Lu, Y. Sun, C. A. Peterson, J.-G. Shiah, R. C. Straight and J. Kopeček, Combination chemotherapy and photodynamic therapy with N,-(2- hydroxypropyl)methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma hetero-transplanted in nude mice, Cancer Res., 1996, 56, 3980–3985.

    CAS  PubMed  Google Scholar 

  358. D. A. Bellnier, W. R. Greco, G. M. Loewen, H. Nava, A. R. Oseroff, R. K. Pandey, T. Tsuchida and T. J. Dougherty, Population Pharmacokinetics of the Photodynamic Therapy Agent 2-[1-Hexyloxyethyl]-2- devinyl Pyropheophorbide-a in Cancer Patients, Cancer Res., 2003, 63, 1806–1813.

    CAS  PubMed  Google Scholar 

  359. S. Wang, G. Kim, Y. E. K. Lee, H. J. Hah, M. Ethirajan, R. K. Pandey and R. Kopelman, Multifunctional biodegradable polyacrylamide nanocarriers for cancer theranostics-A “see and treat” strategy, ACS Nano, 2012, 6, 6843–6851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. R. Bonnett, R. D. White, U. J. Winfield and M. C. Berenbaum, Hydroporphyrins of the meso-tetra (hydroxyphenyl)porphyrin series as tumour photosensitizers, Biochem. J., 1989, 261, 277–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. M. O. Senge and J. C. Brandt, Temoporfin (Foscan®, 5,10,15,20-Tetra(m-hydroxyphenyl)chlorin)—A Second-generation Photosensitizer, Photochem. Photobiol., 2011, 87, 1240–1296.

    Article  CAS  Google Scholar 

  362. E. Gaio, D. Scheglmann, E. Reddi and F. Moret, Uptake and photo-toxicity of Foscan®, Foslip® and Fospeg® in multicellular tumor spheroids, J. Photochem. Photobiol., B, 2016, 161, 244–252.

    Article  CAS  Google Scholar 

  363. D. Gao, H. Xu, M. A. Philbert and R. Kopelman, Ultrafine hydrogel nanoparticles: Synthetic approach and therapeutic application in living cells, Angew. Chem., Int. Ed., 2007, 46, 2224–2227.

    Article  CAS  Google Scholar 

  364. N. Dragicevic-Curic, S. Winter, M. Stupar, J. Milic, D. Krajišnik, B. Gitter and B. A. Fahr, Temoporfin-loaded liposomal gels: Viscoelastic properties and in vitro skin penetration, Int. J. Pharm., 2009, 373, 77–84.

    Article  CAS  PubMed  Google Scholar 

  365. N. Dragicevic-Curic, S. Winter, D. Krajisnik, M. Stupar, J. Milic, S. Graefe and A. Fahr, Stability evaluation of temoporfin-loaded liposomal gels for topical application, J. Liposome Res., 2010, 20, 38–48.

    Article  CAS  PubMed  Google Scholar 

  366. S. Paul, P. W. S. Heng and L. W. Chan, pH-dependent complexation of hydroxypropyl-beta-cyclodextrin with chlorin e6: effect on solubility and aggregation in relation to photodynamic efficacy, J. Pharm. Pharmacol., 2016, 68, 439–449.

    Article  CAS  PubMed  Google Scholar 

  367. S. A. Lim, H. Park, J. M. Lee and E. S. Lee, Chlorin e6- embedded starch nanogels for improved photodynamic tumor ablation, Polym. Adv. Technol., 2018, 29, 2766–2773.

    CAS  Google Scholar 

  368. F. Schmitt, L. Lagopoulos, P. Käuper, N. Rossi, N. Busso, J. Barge, G. Wagnièresd, C. Laueb, C. Wandreye and L. Juillerat-Jeannereta, Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints, J. Controlled Release, 2010, 144, 242–250.

    Article  CAS  Google Scholar 

  369. M. Abbas, R. Xing, N. Zhang, Q. Zou and X. Yan, Antitumor Photodynamic Therapy Based on Dipeptide Fibrous Hydrogels with Incorporation of Photosensitive Drugs, ACS Biomater. Sci. Eng., 2018, 4, 2046–2052.

    CAS  Google Scholar 

  370. R. Mukerji, J. Schaal, X. Li, J. Bhattacharyya, D. Asai, M. R. Zalutsky, A. Chilkotia and W. Liu, Spatiotemporally photoradiation-controlled intratumoral depot for combination of brachytherapy and photodynamic therapy for solid tumor, Biomaterials, 2016, 79, 79–87.

    Article  CAS  PubMed  Google Scholar 

  371. J. C. Carmello, F. Alves, E. G. O. Mima, J. H. Jorge, V. S. Bagnato and A. C. Pavarina, Photoinactivation of single and mixed biofilms of Candida albicans and non-albicans Candida species using Photodithazine®, Photodiagn. Photodyn. Ther., 2017, 17, 194–199.

    CAS  Google Scholar 

  372. F. Alves, G. C. Alonso, J. C. Carmello, E. G. O. Mima, V. S. Bagnato and A. C. Pavarina, Antimicrobial Photodynamic Therapy mediated by Photodithazine® in the treatment of denture stomatitis: A case report, Photodiagn. Photodyn. Ther., 2018, 21, 168–171.

    Google Scholar 

  373. B.-C. Bae and K. Na, Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy, Biomaterials, 2010, 31, 6325–6335.

    Article  CAS  PubMed  Google Scholar 

  374. L. Pan, Y. Li, L. Zhu, B. Zhang, Y. Shen and A. Xie, A novel composite hydrogel initiated by Spinacia oleracea L. extract on Hela cells for localized photodynamic therapy, Mater. Sci. Eng., C, 2017, 75, 1448–1455.

    Article  CAS  Google Scholar 

  375. A. A. Ryan and M. O. Senge, How green is green chemistry? Chlorophylls as a bioresource from biorefineries and their commercial potential in medicine and photovoltaics, Photochem. Photobiol. Sci., 2015, 14, 638–660.

    CAS  Google Scholar 

  376. A. R. Karimi, A. Khodadadi and M. Hadizadeh, A nanoporous photosensitizing hydrogel based on chitosan cross-linked by zinc phthalocyanine: An injectable and pH-stimuli responsive system for effective cancer therapy, RSC Adv., 2016, 6, 91445–91452.

    Article  CAS  Google Scholar 

  377. Y. Wang, B. Han, R. Shi, L. Pan, H. Zhang, Y. Shen, C. Li, F. Huang and A. Xie, Preparation and characterization of a novel hybrid hydrogel shell for localized photodynamic therapy, J. Mater. Chem. B, 2013, 1, 6411–6417.

    Article  CAS  PubMed  Google Scholar 

  378. L. A. S. D. Silva, R. L. da Cruz de Jesus, R. A. Fiuza-Junior, H. M. C. Andrade, I. C. Rigoli, R. M. N. de Assunção, J. M. Barichello and R. G. de Lima, Aloe vera gel influence on the micellization behavior of copolymer Pluronic F127: A potential photosensitizer carrier for topical application, J. Appl. Polym. Sci., 2018, 135, 46191.

    Article  CAS  Google Scholar 

  379. M. A. B. Melo, W. Caetano, E. L. Oliveira, P. M. Barbosa, A. L. B. Rando, M. M. D. Pedros and V. A. F. Godoi, Effects of nanoparticles of hydroxy-aluminum phthalocyanine on markers of liver injury and glucose metabolism in diabetic mice, Braz. J. Med. Biol. Res., 2019, 52, e7715.

    Google Scholar 

  380. A. Fraix, R. Gref and S. A. Sortino, multi-photoresponsive supramolecular hydrogel with dual-color fluorescence and dual-modal photodynamic action, J. Mater. Chem. B, 2014, 2, 3443–3449.

    Article  CAS  PubMed  Google Scholar 

  381. H. Arima, Y. Hayashi, T. Higashi and K. Motoyama, Recent advances in cyclodextrin delivery techniques, Expert Opin. Drug Delivery, 2015, 12, 1425–1441.

    Google Scholar 

  382. U. Gilles, R. Ziessel and A. Harriman, The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed, Angew. Chem., Int. Ed., 2008, 47, 1184–1201.

    Article  CAS  Google Scholar 

  383. J. Karolin, L. B. A. Johansson, L. Strandberg and T. Ny, Fluorescence and Absorption Spectroscopic Properties of Dipyrrometheneboron Difluoride (BODIPY) Derivatives in Liquids, Lipid Membranes, and Proteins, J. Am. Chem. Soc., 1994, 116, 7801–7806.

    Article  CAS  Google Scholar 

  384. A. Nagai, J. Miyake, K. Kokado, Y. Nagata and Y. Chujo, Highly luminescent BODIPY-based organoboron polymer exhibiting supramolecular self-assemble structure, J. Am. Chem. Soc., 2008, 130, 15276–15278.

    Article  CAS  PubMed  Google Scholar 

  385. C. Li and S. Liu, Polymeric assemblies and nanoparticles with stimuli-responsive fluorescence emission characteristics, Chem. Commun., 2012, 48, 3262–3278.

    Article  CAS  Google Scholar 

  386. M. Hecht, W. Kraus and K. Rurack, A highly fluorescent pH sensing membrane for the alkaline pH range incorporating a BODIPY dye, Analyst, 2013, 138, 325–332.

    Article  CAS  PubMed  Google Scholar 

  387. S. Belali, G. Emandi, A. A. Cafolla, B. O’Connell, B. Haffner, M. E. Möbius, A. Karimi and M. O. Senge, Water-soluble, neutral 3,5-diformyl-BODIPY with extended fluorescence lifetime in a self-healable chitosan hydrogel, Photochem. Photobiol. Sci., 2017, 16, 1700–1708.

    Article  CAS  Google Scholar 

  388. R. París, I. Quijada-Garrido, O. García and M. Liras, BODIPY-conjugated thermo-sensitive fluorescent polymers based on 2-(2-methoxyethoxy)ethyl methacrylate, Macromolecules, 2011, 44, 80–86.

    Article  CAS  Google Scholar 

  389. Y.-E. L. Koo, W. Fan, H. Hah, H. Xu, D. Orringer, B. Ross, A. Rehemtulla, M. A. Philbert and R. Kopelman, Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy, Appl. Opt., 2007, 46, 1924–1930.

    CAS  Google Scholar 

  390. M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. A. Philbert, R. J. Schneider and R. Kopelman, Production of singlet oxygen by Ru(dpp (SO3)2)3 incorporated in polyacrylamide PEBBLES, Sens. Actuators, B, 2003, 90, 82–89.

    Article  CAS  Google Scholar 

  391. D. Guo, S. Xu, Y. Huang, H. Jiang, W. Yasen, N. Wang, Y. Su, J. Qian, J. Li, C. Zhang and X. Zhu, Platinum(IV) complex based two-in-one polyprodrug for a combinatorial chemo-photodynamic therapy, Biomaterials, 2018, 177, 67–77.

    Article  CAS  PubMed  Google Scholar 

  392. C. Mao, Y. Xiang, X. Liu, Z. Cui, X. Yang, K. W. K. Yeung, H. Pan, X. Wang, P. K. Chu and S. Wu, Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures, ACS Nano, 2017, 11, 9010–9021.

    Article  CAS  PubMed  Google Scholar 

  393. H. Zhang, R. Shi, A. Xie, J. Li, L. Chen, P. Chen, S. Li, F. Huang and Y. Shen, Novel TiO2/PEGDA hybrid hydrogel prepared in situ on tumor cells for effective photodynamic therapy, ACS Appl. Mater. Interfaces, 2013, 5, 12317–12322.

    CAS  Google Scholar 

  394. S. Glass, B. Trinklein, B. Abel and A. Schulze, TiO2 as photosensitizer and photoinitiator for synthesis of photoactive TiO2-PEGDA hydrogel without organic photoinitiator, Front. Chem., 2018, 6, 340.

    Google Scholar 

  395. S. B. Levy and B. Marshall, Antibacterial Resistance Worldwide: Causes, Challenges and Responses, Nat. Med., 2004, 10, S122–S129.

    Article  CAS  PubMed  Google Scholar 

  396. T. Maisch, Resistance in Antimicrobial Photodynamic Inactivation of Bacteria, Photochem. Photobiol. Sci., 2015, 14, 1518–1526.

    CAS  Google Scholar 

  397. F. C. Tenover, Mechanisms of Antimicrobial Resistance in Bacteria, Am. J. Med., 2006, 119, S3–S10.

    Article  CAS  PubMed  Google Scholar 

  398. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti and G. Roncucci, Photodynamic Therapy in the Treatment of Microbial Infections: Basic Principles and Perspective Applications, Lasers Surg. Med., 2006, 38, 468–481.

    Google Scholar 

  399. R. A. Craig, C. P. McCoy, S. P. Gorman and D. S. Jones, Photosensitisers – the Progression from Photodynamic Therapy to Anti-Infective Surfaces, Expert Opin. Drug Delivery, 2015, 12, 85–101.

    CAS  Google Scholar 

  400. M. R. Hamblin and T. Hasan, Photodynamic Therapy: A New Antimicrobial Approach to Infectious Disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    CAS  Google Scholar 

  401. M. R. Brown and P. Gilbert, Sensitivity of biofilms to antimicrobial agents, J. Appl. Bacteriol., 1993, 74, 87S–97S.

    Article  PubMed  Google Scholar 

  402. X. Zhang, L.-Y. Xia, X. Chen, Z. Chen and F.-G. Wu, Hydrogel-based phototherapy for fighting cancer and bacterial infection, Sci. China Mater., 2017, 60, 487–503.

    Article  CAS  Google Scholar 

  403. A. W. Smith, Biofilms and antibiotic therapy: Is there a role for combating bacterial resistance by the use of novel drug delivery systems?, Adv. Drug Delivery Rev., 2005, 57, 1539–1550.

    Article  CAS  Google Scholar 

  404. M. V. Risbud, A. A. Hardikar, S. V. Bhat and R. R. Bhonde, pH-Sensitive Freeze-Dried Chitosan–Polyvinyl Pyrrolidone Hydrogels as Controlled Release System for Antibiotic Delivery, J. Controlled Release, 2000, 68, 23–30.

    Article  CAS  Google Scholar 

  405. S. P. Hudson, R. Langer, G. R. Fink and D. S. Kohane, Injectable in Situ Cross-Linking Hydrogels for Local Antifungal Therapy, Biomaterials, 2010, 31, 1444–1452.

    Article  CAS  PubMed  Google Scholar 

  406. J. H. Sung, M.-R. Hwang, J. O. Kim, J. H. Lee, Y. I. Kim, J. H. Kim, S. W. Chang, S. G. Jin, J. A. Kim, W. S. Lyoo, S. S. Han, S. K. Ku, C. S. Yong and H.-G. Choi, Gel Characterisation and in Vivo Evaluation of Minocycline- Loaded Wound Dressing with Enhanced Wound Healing Using Polyvinyl Alcohol and Chitosan, Int. J. Pharm., 2010, 392, 232–240.

    Article  CAS  PubMed  Google Scholar 

  407. C. P. McCoy, R. A. Craig, S. M. McGlinchey, L. Carson, D. S. Jones and S. P. Gorman, Surface localisation of photosensitisers on intraocular lens biomaterials for prevention of infectious endophthalmitis and retinal protection, Biomaterials, 2012, 33, 7952–7958.

    Article  CAS  PubMed  Google Scholar 

  408. S. Liu, H. Yuan, H. Bai, P. Zhang, F. Lv, L. Liu, Z. Dai, J. Bao and S. Wang, Electrochemiluminescence for Electric-Driven Antibacterial Therapeutics, J. Am. Chem. Soc., 2018, 140, 2284–2291.

    Article  CAS  PubMed  Google Scholar 

  409. D. Thiboutot, H. Gollnick, V. Bettoli, B. Dréno, S. Kang, J. J. Leyden, A. R. Shalita, V. T. Lozada, D. Berson, A. Finlay, C. L. Goh, M. I. Herane, A. Kaminsky, R. Kubba, A. Layton, Y. Miyachi, M. Perez, J. P. Martin, M. Ramos-e- Silva, J. A. See, N. Shear and J. Wolf Jr., New Insights into the Management of Acne: An Update from the Global Alliance to Improve Outcomes in Acne Group, J. Am. Acad. Dermatol., 2009, 60, S1–S50.

    Article  PubMed  Google Scholar 

  410. M. L. Frade, S. R. De Annunzio, G. M. F. Calixto, F. D. Victorelli, M. Chorilli and C. R. Fontana, Assessment of Chitosan-Based Hydrogel and Photodynamic Inactivation against Propionibacterium Acnes, Molecules, 2018, 23, 473.

    Article  PubMed Central  CAS  Google Scholar 

  411. D. J. Krahwinkel and H. W. Boothe Jr., Topical and Systemic Medications for Wounds, Vet. Clin. North Am. Small Anim. Pract., 2006, 36, 739–757.

    Article  CAS  PubMed  Google Scholar 

  412. M. Q. Mesquita, C. J. Dias, M. G. P. M. S. Neves, A. Almeida and M. A. F. Faustino, Revisiting Current Photoactive Materials for Antimicrobial Photodynamic Therapy, Molecules, 2018, 23, 2424.

    Google Scholar 

  413. J. Wu, X. Xu, W. Tang, R. Kopelman, M. A. Philbert and C. Xi, Eradication of bacteria in suspension and biofilms using methylene blue-loaded dynamic nanoplatforms, Antimicrob. Agents Chemother., 2009, 53, 3042–3048.

    Article  CAS  Google Scholar 

  414. G. M. Halpenny, R. C. Steinhardt, K. A. Okialda and P. K. Mascharak, Characterization of pHEMA-based hydrogels that exhibit light-induced bactericidal effect via release of NO, J. Mater. Sci. Mater. Med., 2009, 20, 2353–2360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. R. F. Donnelly, C. M. Cassidy, R. G. Loughlin, A. Brown, M. M. Tunney, M. G. Jenkins and P. A. McCarron, Delivery of Methylene Blue and meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate from cross-linked poly(vinyl alcohol) hydrogels: A potential means of photodynamic therapy of infected wounds, J. Photochem. Photobiol., B, 2009, 96, 223–231.

    Article  CAS  Google Scholar 

  416. C.-P. Chen, C.-M. Hsieh, T. Tsai, J.-C. Yang and C.-T. Chen, Optimization and evaluation of a chitosan/hydroxypropyl methylcellulose hydrogel containing toluidine blue O for antimicrobial photodynamic inactivation, Int. J. Mol. Sci., 2015, 16, 20859–20872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  417. C. Spagnul, J. Greenman, M. Wainwright, Z. Kamil and R. W. Boyle, Synthesis, characterization and biological evaluation of a new photoactive hydrogel against Gram-positive and Gram-negative bacteria, J. Mater. Chem. B, 2016, 4, 1499–1509.

    Article  CAS  PubMed  Google Scholar 

  418. C. Spagnul, L. C. Turner, F. Giuntini, J. Greenman and R. W. Boyle, Synthesis and bactericidal properties of porphyrins immobilized in a polyacrylamide support: influence of metal complexation on photoactivity, J. Mater. Chem. B, 2017, 5, 1834–1845.

    Article  CAS  PubMed  Google Scholar 

  419. M. Yin, Z. Li, L. Zhou, K. Dong, J. Ren and X. Qu, A multifunctional upconverting nanoparticle incorporated polycationic hydrogel for near-infrared triggered and synergistic treatment of drug-resistant bacteria, Nanotechnology, 2016, 27, 125601.

    Google Scholar 

  420. C. Parsons, C. P. McCoy, S. P. Gorman, D. S. Jones, S. E. J. Bell, C. Brady and S. M. McGlinchey, Anti-infective photodynamic biomaterials for the prevention of intraocular lens-associated infectious endophthalmitis, Biomaterials, 2009, 30, 597–602.

    Article  CAS  PubMed  Google Scholar 

  421. E. Caruso, S. Ferrara, P. Ferruti, A. Manfredi, E. Ranucci and V. T. Orlandi, Enhanced photoinduced antibacterial activity of a BODIPY photosensitizer in the presence of polyamidoamines, Lasers Med. Sci., 2018, 33, 1401–1407.

    Google Scholar 

  422. C. Mao, Y. Xiang, X. Liu, Z. Cui, X. Yang, Z. Li, S. Zhu, Y. Zheng, K. W. K. Yeung and S. Wu, Repeatable Photodynamic Therapy with Triggered Signaling Pathways of Fibroblast Cell Proliferation and Differentiation to Promote Bacteria-Accompanied Wound Healing, ACS Nano, 2018, 12, 1747–1759.

  423. C. P. McCoy, N. J. Irwin, L. Donnelly, D. S. Jones, J. G. Hardy and L. Carson, Anti-Adherent Biomaterials for Prevention of Catheter Biofouling, Int. J. Pharm., 2018, 535, 420–427.

    Article  CAS  PubMed  Google Scholar 

  424. L. Donnelly, J. G. Hardy, S. P. Gorman, D. S. Jones, N. J. Irwin and C. P. McCoy, Photochemically Controlled Drug Dosing from a Polymeric Scaffold, Pharm. Res., 2017, 34, 1469–1476.

    CAS  Google Scholar 

  425. S. J. Fallows, M. J. Garland, C. M. Cassidy, M. M. Tunney, T. R. R. Singh and R. F. Donnelly, Electrically-responsive anti-adherent hydrogels for photodynamic antimicrobial chemotherapy, J. Photochem. Photobiol., B, 2012, 114, 61–72.

    Article  CAS  Google Scholar 

  426. J.-J. Hu, Y.-J. Cheng and X.-Z. Zhang, Recent Advances in Nanomaterials for Enhanced Photothermal Therapy of Tumors, Nanoscale, 2018, 10, 22657–22672.

    Article  CAS  PubMed  Google Scholar 

  427. J. B. Vines, D.-J. Lim and H. Park, Contemporary Polymer- Based Nanoparticle Systems for Photothermal Therapy, Polymers, 2018, 10, 1357.

    Article  PubMed Central  CAS  Google Scholar 

  428. M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su and C.-S. Yeh, Au Nanorod Design as Light-Absorber in the First and Second Biological Near- Infrared Windows for in Vivo Photothermal Therapy, ACS Nano, 2013, 7, 5330–5342.

    Article  CAS  PubMed  Google Scholar 

  429. A. Welch, The Thermal Response of Laser Irradiated Tissue, IEEE J. Quantum Electron., 1984, 20, 1471–1481.

    Article  Google Scholar 

  430. Y. Qu, B. Y. Chu, J. R. Peng, J. F. Liao, T. T. Qi, K. Shi, X. N. Zhang, Y. Q. Wei and Z. Y. Qian, A Biodegradable Thermo-Responsive Hybrid Hydrogel: Therapeutic Applications in Preventing the Post-Operative Recurrence of Breast Cancer, NPG Asia Mater., 2015, 7, e207.

    Google Scholar 

  431. L. Y. Zhao, Y. M. Liu, R. Chang, R. R. Xing and X. H. Yan, Supramolecular Photothermal Nanomaterials as an Emerging Paradigm toward Precision Cancer Therapy, Adv. Funct. Mater., 2019, 29, 1806877.

    Google Scholar 

  432. D. Jaque, L. M. Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. M. Rodriguez and J. G. Sole, Nanoparticles for photothermal therapies, Nanoscale, 2014, 6, 9494–9530.

    Article  CAS  PubMed  Google Scholar 

  433. T. Curry, T. Epstein, R. Smith and R. Kopelman, Photothermal therapy of cancer cells mediated by blue hydrogel nanoparticles, Nanomedicine, 2013, 8, 1577–1586.

    Article  CAS  PubMed  Google Scholar 

  434. C.-W. Hsiao, E.-Y. Chuang, H.-L. Chen, D. Wan, C. Korupalli, Z.-X. Liao, Y.-L. Chiu, W.-T. Chia, K.-J. Lin and H. W. Sung, Photothermal tumor ablation in mice with repeated therapy sessions using NIR-absorbing micellar hydrogels formed in situ, Biomaterials, 2015, 56, 26–35.

    Article  CAS  PubMed  Google Scholar 

  435. C. Wang, X. Wang, K. Dong, J. Luo, Q. Zhang and Y. Chen, Injectable and responsively degradable hydrogel for personalized photothermal therapy, Biomaterials, 2016, 104, 129–137.

    Article  CAS  PubMed  Google Scholar 

  436. M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang and Y. Cao, Novel concept of the smart NIR-light- controlled drug release of black phosphorus nanostructure for cancer therapy, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, 501–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  437. R. Saini, N. V. Lee, K. Y. P. Liu and C. F. Poh, Prospects in the application of photodynamic therapy in oral cancer and premalignant lesions, Cancers, 2016, 8, 1–14.

    Article  CAS  Google Scholar 

  438. L. Zou, H. Wang, B. He, L. Zeng, T. Tan, H. Cao, X. He, Z. Zhang, S. Guo and Y. Li, Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics, Theranostics, 2016, 6, 762–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Y. Xu, X. Liang, P. Bhattarai, Y. Sun, Y. Zhou, S. Wang, W. Chen, H. Ge, J. Wang, L. Cui and Z. Dai, Enhancing Therapeutic Efficacy of Combined Cancer Phototherapy by Ultrasound-Mediated In Situ Conversion of Near- Infrared Cyanine/Porphyrin Microbubbles into Nanoparticles, Adv. Funct. Mater., 2017, 27, 1–12.

    Article  CAS  Google Scholar 

  440. D. Chen, J. Zhang, Y. Tang, X. Huang, J. Shao, W. Si, J. Ji, Q. Zhang, W. Huang and X. Dong, A tumor-mitochondria dual targeted aza-BODIPY-based nanotheranostic agent for multimodal imaging-guided phototherapy, J. Mater. Chem. B, 2018, 6, 4522–4530.

    Article  CAS  PubMed  Google Scholar 

  441. U. Chitgupi, Y. Qin and J. F. Lovell, Targeted Nanomaterials for Phototherapy, Nanotheranostics, 2016, 1, 38–58.

    Article  Google Scholar 

  442. P. Singh, S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar and I. Mijakovic, Gold nanoparticles in diagnostics and therapeutics for human cancer, Int. J. Mol. Sci., 2018, 19, 1979.

    Article  PubMed Central  CAS  Google Scholar 

  443. X. Wei, H. Chen, H. P. Tham, N. Zhang, P. Xing, G. Zhang and Y. Zhao, Combined Photodynamic and Photothermal Therapy Using Cross-Linked Polyphosphazene Nanospheres Decorated with Gold Nanoparticles, ACS Appl. Nano Mater., 2018, 1, 3663–3672.

    Article  CAS  Google Scholar 

  444. C. Zheng and Z. Huang, Microgel reinforced composite hydrogels with pH-responsive, self-healing properties, Colloids Surf., A, 2015, 468, 327–332.

    Article  CAS  Google Scholar 

  445. Y. Wang, B. Zhang, L. Zhu, Y. Li, F. Huang, S. Li, Y. Shen and A. Xie, Preparation and multiple antitumor properties of AuNRs/spinach extract/PEGDA composite hydrogel, ACS Appl. Mater. Interfaces, 2014, 6, 15000–15006.

    CAS  Google Scholar 

  446. G. Chang, Y. Wang, B. Gong, Y. Xiao, Y. Chen, S. Wang, S. Li, F. Huang, Y. Shen and A. Xie, Reduced graphene oxide/amaranth extract/AuNPs composite hydrogel on tumor cells as integrated platform for localized and multiple synergistic therapy, ACS Appl. Mater. Interfaces, 2015, 7, 11246–11256.

    CAS  Google Scholar 

  447. G. Chang, S. Li, F. Huang, X. Zhang, Y. Shen and A. Xie, Multifunctional Reduced Graphene Oxide Hydrogel as Drug Carrier for Localized and Synergic Photothermal/Photodynamics/Chemo Therapy, J. Mater. Sci. Technol., 2016, 32, 753–762.

    Article  CAS  Google Scholar 

  448. Y. Yang, L. Zhu, F. Xia, B. Gong, A. Xie, S. Li, F. Huang, S. Wang, Y. Shen and D. T. Weaver, A novel 5-FU/rGO/Bce hybrid hydrogel shell on a tumor cell: one-step synthesis and synergistic chemo/photo-thermal/photodynamic effect, RSC Adv., 2017, 7, 2415–2425.

    Article  CAS  Google Scholar 

  449. H. Zhang, X. Zhu, Y. Ji, X. Jiao, Q. Chen, L. Hou, H. Zhang and Z. Zhang, Near-infrared-triggered in situ hybrid hydrogel system for synergistic cancer therapy, J. Mater. Chem. B, 2015, 3, 6310–6326.

    Article  CAS  PubMed  Google Scholar 

  450. T. Labouret, J.-F. Audibert, R. B. Pansu and B. Palpant, Plasmon-Assisted Production of Reactive Oxygen Species by Single Gold Nanorods, Small, 2015, 11, 4475–4479.

    Article  CAS  PubMed  Google Scholar 

  451. J. Conde, N. Oliva, Y. Zhang and N. Artzi, Local Triple- Combination Therapy Results in Tumour Regression and Prevents Recurrence in a Colon Cancer Model, Nat. Mater., 2016, 15, 1128–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  452. R. Xing, K. Liu, T. Jiao, N. Zhang, K. Ma, R. Zhang, Q. Zou, G. Ma and X. Yan, An Injectable Self-Assembling Collagen-Gold Hybrid Hydrogel for Combinatorial Antitumor Photothermal/Photodynamic Therapy, Adv. Mater., 2016, 28, 3669–3676.

    CAS  Google Scholar 

  453. M. Li, X. Liu, L. Tan, Z. Cui, X. Yang, Z. Li, Y. Zheng, K. W. K. Yeung, P. K. Chu and S. Wu, Noninvasive Rapid Bacteria-Killing and Acceleration of Wound Healing through Photothermal/Photodynamic/Copper Ion Synergistic Action of a Hybrid Hydrogel, Biomater. Sci., 2018, 6, 2110–2121.

    CAS  Google Scholar 

  454. L. Pereira and M. Alves, Dyes-Environmental Impact and Remediation, in Environmental Protection Strategies for Sustainable Development, ed. A. Malik and E. Grohmann, Springer, Berlin/Heidelberg, 2012, pp. 111–162.

  455. G. Crini and P. M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature, Prog. Polym. Sci., 2008, 33, 399–447.

    CAS  Google Scholar 

  456. L. Ya, Q. Shuai, X. Gong, Q. Gu and H. Yu, Synthesis of microporous cationic hydrogel of hydroxypropyl cellulose (HPC) and its application on anionic dye removal, Clean, 2009, 37, 392–398.

    Google Scholar 

  457. Y. Zhou, S. Fu, H. Liu, S. Yang and H. Zhan, Removal of methylene blue dyes from wastewater using cellulose-based superadsorbent hydrogels, Polym. Eng. Sci., 2011, 51, 2417–2424.

    CAS  Google Scholar 

  458. H. Dai and H. Huang, Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue, Carbohydr. Polym., 2016, 148, 1–10.

    CAS  Google Scholar 

  459. P. Chen, X. Liu, R. Jin, W. Nie and Y. Zhou, Dye adsorption and photo-induced recycling of hydroxypropyl-cellulose/molybdenum disulfide composite hydrogels, Carbohydr. Polym., 2017, 167, 36–43.

    CAS  Google Scholar 

  460. Y. Zhao, Y. Zhang, A. Liu, Z. Wei and S. Liu, Construction of three-dimensional hemin-functionalized graphene hydrogel with high mechanical stability and adsorption capacity for enhancing photodegradation of methylene blue, ACS Appl. Mater. Interfaces, 2017, 9, 4006–4014.

    CAS  Google Scholar 

  461. V. P. Mahida and M. P. Patel, A novel approach for the synthesis of hydrogel nanoparticles and a removal study of reactive dyes from industrial effluent, RSC Adv., 2016, 6, 21577–21589.

    Article  CAS  Google Scholar 

  462. S. Song, L. Feng, A. Song and J. Hao, Room-temperature super hydrogel as dye adsorption agent, J. Phys. Chem. B, 2012, 116, 12850–12856.

    Article  CAS  PubMed  Google Scholar 

  463. S.-T. Ong, P.-S. Keng, W.-N. Lee, S.-T. Ha and Y.-T. Hung, Dye Waste Treatment, Water, 2011, 3, 157–176.

    Article  CAS  Google Scholar 

  464. K. Szczubiałka, A. Karewicz, Ł. Moczek, K. Zomerska and M. Nowakowska, Removal of pentachlorophenol from water using novel smart hydrogel microspheres, E-Polymers, 2006, 6, 031.

    Article  Google Scholar 

  465. J. Yun, D. Jijn, Y.-S. Lee and H.-I. Kim, Photocatalytic treatment of acidic wastewater by electrospun composite nanofibers of pH-sensitive hydrogel and TiO2, Mater. Lett., 2010, 64, 2431–2434.

    CAS  Google Scholar 

  466. J. P. Fisher, D. Dean, P. S. Engel and A. G. Mikos, Photoinitiated polymeryzation of biomaterials, Annu. Rev. Mater. Res., 2001, 31, 171–181.

    Article  CAS  Google Scholar 

  467. S. Park, J. P. Bearinger, E. P. Lautenschlager, D. G. Castner and K. E. Healy, Surface modification of poly(ethylene terephthalate) angioplasty balloons with a hydrophilic poly(acrylamide-co-ethylene glycol) interpenetrating polymer network coating, J. Biomed. Mater. Res., 2000, 53, 568–576.

    Article  CAS  PubMed  Google Scholar 

  468. Y. An and J. A. Hubbell, Intraarterial protein delivery via intimally-adherend bilayer hydrogels, J. Controlled Release, 2000, 64, 205–215.

    Article  CAS  Google Scholar 

  469. Y. Hao, H. Shih, Z. Muňoz, A. Kemp and C.-C. Lin, Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture, Acta Biomater., 2014, 10, 104–114.

    Article  CAS  PubMed  Google Scholar 

  470. O. Jordan and F. Marquis-Weible, Holographic control of hydrogel formation for biocompatible photopolymer, Proc. SPIE, 1996, 2629, 46–53.

    CAS  Google Scholar 

  471. Y. Hao and C.-C. Lin, Degradable thiol-acrylate hydrogels as tunable matrices for three-dimensional hepatic culture, J. Biomed. Mater. Res., Part A, 2014, 102, 3813–3827.

    Article  CAS  Google Scholar 

  472. D. Petta, D. W. Grijpma, M. Alini, D. Eglin and M. D’Este, Three-Dimensional Printing of a Tyramine Hyaluronan Derivative with Double Gelation Mechanism for Independent Tuning of Shear Thinning and Postprinting Curing, ACS Biomater. Sci. Eng., 2018, 4, 3088–3098.

    CAS  Google Scholar 

  473. C. Fukaya, Y. Nakayama, Y. Murayama, S. Omata, A. Ishikawa, Y. Hosaka and T. Nakagawa, Improvement of hydrogelation abilities and handling of photocurable gelatin-based crosslinking materials, J. Biomed. Mater. Res., Part B, 2009, 91, 329–336.

    Article  CAS  Google Scholar 

  474. F. M. Andreopoulos, M. J. Roberts, M. D. Bentley, J. M. Harris, E. J. Beckman and A. J. Russell, Photoimmobilization of organophosphorus hydrolase within a PEG-based hydrogel, Biotechnol. Bioeng., 1999, 65, 579–588.

    Article  CAS  Google Scholar 

  475. H. Z. Pan, Y. Yan, L. Tang, Z.-Q. Wu and F.-M. Li, Thermo-responsive behavior of novel polyitaconates having pyrrolidinonyl moiety, Macromol. Rapid Commun., 2000, 21, 567–573.

    Article  CAS  Google Scholar 

  476. D. Kuckling, M. E. Harmon and C. W. Frank, Photo-crosslinkable PNIPAAm copolymers. 1. Synthesis and characterization of constrained temperature-responsive hydrogel layers, Macromolecules, 2002, 35, 6377–6383.

    Article  CAS  Google Scholar 

  477. M. Ebara, J. M. Hoffman, P. S. Stayton and A. S. Hoffman, Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and ‘smart’ polymers, Radiat. Phys. Chem., 2007, 76, 1409–1413.

    CAS  Google Scholar 

  478. J. P. F. Wong, A. J. MacRobert, U. Cheema and R. A. Brown, Mechanical anisotropy in compressed collagen produced by localised photodynamic cross-linking, J. Mech. Behav. Biomed. Mater., 2013, 18, 132–139.

    Article  CAS  PubMed  Google Scholar 

  479. D. Chai, T. Juhasz, D. J. Brown and J. V. Jester, Nonlinear optical collagen cross-linking and mechanical stiffening: A possible photodynamic therapeutic approach to treating corneal ectasia, J. Biomed. Opt., 2013, 18, 038003.

    Google Scholar 

  480. P. E. Donnelly, T. Chen, A. Finch, C. Brial, S. A. Maher and P. A. Torzilli, Photocrosslinked Tyramine-Substituted Hyaluronate Hydrogels with Tunable Mechanical Properties Improve Immediate Tissue-Hydrogel Interfacial Strength in Articular Cartilage, J. Biomater. Sci., Polym. Ed., 2017, 28, 582–600.

    Article  CAS  Google Scholar 

  481. A. G. Savelyev, A. V. Sochilina, R. A. Akasov, A. V. Mironov, V. A. Semchishen, A. N. Generalova, E. V. Khaydukov and V. K. Popov, Extrusion-based 3D printing of photocurable hydrogels in presence of flavin mononucleotide for tissue engineering, Sovrem. Tehnologii Med., 2018, 10, 88–92.

    Google Scholar 

  482. E. A. Kamoun, A. El-Betany, H. Menzel and X. Chen, Influence of photoinitiator concentration and irradiation time on the crosslinking performance of visible-light activated pullulan-HEMA hydrogels, Int. J. Biol. Macromol., 2018, 120, 1884–1892.

    Article  CAS  PubMed  Google Scholar 

  483. H. Kubota and A. Fukuda, Photopolymerization synthesis of poly (N-isopropylacrylamide) hydrogels, J. Appl. Polym. Sci., 1997, 65, 1313–1318.

    Article  CAS  Google Scholar 

  484. Y. Nakayama and T. Matsuda, Novel Surface Fixation Technology of Hydrogel Based on Photochemical Method: Heparin-Immobilized Hydrogelated Surface, J. Polym. Sci., Part A: Polym. Chem., 1993, 31, 977–982.

    Article  CAS  Google Scholar 

  485. Y. Nakayama and T. Matsuda, Preparation and Characteristics of Photocrosslinkable Hydrophilic Polymer Having Cinnamate Moiety, J. Polym. Sci., Part A: Polym. Chem., 1992, 30, 2451–2457.

    Article  CAS  Google Scholar 

  486. Y. Chujo, K. Sada and T. Saegusa, Polyoxazoline Having a Coumarin Moiety as a Pendant Group, Synthesis and Photogelation, Macromolecules, 1990, 23, 2693–2697.

    Article  Google Scholar 

  487. Y. Chujo, K. Sada, R. Nomura, A. Naka and T. Saegusa, Photogelation and Redox Properties of Anthracene- Disulfide-Modified Polyoxazolines, Macromolecules, 1993, 26, 5611–5614.

    Article  CAS  Google Scholar 

  488. S. J. Bryant, C. R. Nuttelman and K. S. Anseth, Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro, J. Biomater. Sci., Polym. Ed., 2000, 11, 439–457.

    Article  CAS  Google Scholar 

  489. F. You, B. F. Eames and X. Chen, Application of Extrusion- Based Hydrogel Bioprinting for Cartilage Tissue Engineering, Int. J. Mol. Sci., 2017, 18, 1597.

    Article  PubMed Central  CAS  Google Scholar 

  490. V. X. Truong, F. Li, F. Ercole and J. S. Forsythe, Wavelength-Selective Coupling and Decoupling of Polymer Chains via Reversible [2+2] Photocycloaddition of Styrylpyrene for Construction of Cytocompatible Photodynamic Hydrogels, ACS Macro Lett., 2018, 7, 464–469.

    Article  CAS  PubMed  Google Scholar 

  491. A. Gyulkhandanyan, L. Gyulkhandanyan, R. Ghazaryan, F. Fleury, M. Angelini, G. Gyulkhandanyan and V. Sakanyan, Assessment of new cationic porphyrin binding to plasma proteins by planar microarray and spectroscopic methods, J. Biomol. Struct. Dyn., 2013, 31, 363–375.

    Article  CAS  PubMed  Google Scholar 

  492. G. Mistlberger, M. Pawlak, E. Bakker and I. Klimant, Photodynamic optical sensor for buffer capacity and pH based on hydrogel-incorporated spiropyran, Chem. Commun., 2015, 51, 4172–4175.

    Article  CAS  Google Scholar 

  493. T. Bai, A. Sinclair, F. Sun, P. Jain, H.-C. Hung, P. Zhang, J.-R. Ella-Menye, W. Liu and S. Jiang, Harnessing isomerization- mediated manipulation of nonspecific cell/matrix interactions to reversibly trigger and suspend stem cell differentiation, Chem. Sci., 2015, 7, 333–338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  494. J. Yuan, D. Wen, N. Gaponik and A. Eychmüller, Enzyme- Encapsulating Quantum Dot Hydrogels and Xerogels as Biosensors: Multifunctional Platforms for Both Biocatalysis and Fluorescent Probing, Angew. Chem., Int. Ed., 2013, 52, 976–979.

    Article  CAS  Google Scholar 

  495. B. Newland, M. Baeger, D. Eigel, H. Newland and C. Werner, Oxygen-Producing Gellan Gum Hydrogels for Dual Delivery of Either Oxygen or Peroxide with Doxorubicin, ACS Biomater. Sci. Eng., 2017, 3, 787–792.

    Article  CAS  Google Scholar 

  496. J. V. Tosati, E. F. de Oliveira, J. V. Oliveira, N. Nitin and A. R. Monteiro, Light-activated antimicrobial activity of turmeric residue edible coatings against cross-contamination of Listeria innocua on sausages, Food Control, 2018, 84, 177–185.

    Article  CAS  Google Scholar 

  497. Y. Chen, X. Xie, X. Xin, Z.-R. Tang and Y.-J. Xu, Ti3C2Tx- Based Three-Dimensional Hydrogel by a Graphene Oxide- Assisted Self-Convergence Process for Enhanced Photoredox Catalysis, ACS Nano, 2019, 13, 295–304.

    Article  CAS  PubMed  Google Scholar 

  498. M. Yagi, K. Okajima and Y. Kurimura, Mechanism of the Tris(bipyridine)ruthenium(ll) Photosensitized Reversible Redox Reaction of a Macrocyclic Cobalt(lIl) Complex in Gelatin Hydrogel and Hydrosol, J. Chem. Soc., Faraday Trans., 1992, 88, 1411–1415.

    Article  CAS  Google Scholar 

  499. K. Okeyoshi and R. Yoshida, Role of copolymerized photosensitizer in hydrogen-generating gel systems for higher quantum efficiency, Chem. Commun., 2011, 47, 1527–1529.

    Article  CAS  Google Scholar 

  500. B. Yan, J.-C. Boyer, D. Habault, N. R. Branda and Y. Zhao, Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with Upconversion Nanoparticles, J. Am. Chem. Soc., 2012, 134, 16558–16561.

    Article  CAS  PubMed  Google Scholar 

  501. H. D. Chirra, L. Shao, N. Ciaccio, C. B. Fox, J. M. Wade, A. Ma and T. A. Desai, Planar Microdevices for Enhanced In Vivo Retention and Oral Bioavailability of Poorly Permeable Drugs, Adv. Healthcare Mater., 2014, 3, 1648–1654.

    Article  CAS  Google Scholar 

  502. T. Waghule, G. Singhvi, S. K. Dubey, M. M. Pandey, G. Gupta, M. Singh and K. Dua, Microneedles: A Smart Approach and Increasing Potential for Transdermal Drug Delivery System, Biomed. Pharmacother., 2019, 109, 1249–1258.

    Article  CAS  Google Scholar 

  503. E. M. Migdadi, A. J. Courtenay, I. A. Tekko, M. T. C. McCrudden, M.-C. Kearney, E. McAlister, H. O. McCarthy and R. F. Donnelly, Hydrogel-Forming Microneedles Enhance Transdermal Delivery of Metformin Hydrochloride, J. Controlled Release, 2018, 285, 142–151.

    Article  CAS  Google Scholar 

  504. L.-H. Fu, C. Qi, M.-G. Ma and P. Wan, Multifunctional cellulose-based hydrogels for biomedical applications, J. Mater. Chem. B, 2019, 7, 1541–1562.

    Article  CAS  PubMed  Google Scholar 

  505. X. Pang, C. Cui, S. Wan, Y. Jiang, L. Zhang, L. Xia, L. Li, X. Li and W. Tan, Bioapplications of cell-SELEX-generated aptamers in cancer diagnostics, therapeutics, theranostics and biomarker discovery: A comprehensive review, Cancers, 2018, 10, 47.

    Article  PubMed Central  CAS  Google Scholar 

  506. P. Huang, X. Wang, X. Liang, J. Yang, C. Zhang, D. Kong and W. Wang, Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy, Acta Biomater., 2019, 85, 1–26.

    Article  CAS  PubMed  Google Scholar 

  507. M. Hörner, K. Raute, B. Hummel, J. Madl, G. Creusen, O. S. Thomas, E. H. Christen, N. Hotz, R. J. Gübeli, R. Engesser, B. Rebmann, J. Lauer, B. Rolauffs, J. Timmer, W. W. A. Schamel, J. Pruszak, W. Römer, M. D. Zurbriggen, C. Friedrich, A. Walther, S. Minguet, R. Sawarkar and W. Weber, Phytochrome-Based Extracellular Matrix with Reversibly Tunable Mechanical Properties, Adv. Mater., 2019, 31, 1806727.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias O. Senge.

Additional information

Electronic supplementary information (ESI) available: Tabular compilation of photosensitizer-hydrogel systems used in PDT and PTT. See DOI: 10.1039/c9pp00221a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurana, B., Gierlich, P., Meindl, A. et al. Hydrogels: soft matters in photomedicine. Photochem Photobiol Sci 18, 2613–2656 (2019). https://doi.org/10.1039/c9pp00221a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00221a

Navigation