Skip to main content

Advertisement

Log in

Visible-light driven hydrogen production using chlorophyll derivatives conjugated with a viologen moiety in the presence of platinum nanoparticles

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The utilization of the light-harvesting and electron-transferring function of chlorophylls (Chls) has received attention for visible-light driven hydrogen production. In this work, a series of Chl derivatives based on pyropheophorbide-a (Pyro-a) conjugated with a viologen moiety, including a Pyro-a methyl ester directly bonded with the viologen at the 3-position 1, its 31-methylene analog 2 and Pyro-a connected with the viologen in the 17-substituent 3, were synthesized from chemical modification of naturally occurring Chl-a and characterized in terms of their photochemical and photophysical properties. As the photoexcited singlet state of the Pyro-a moiety was strongly quenched by the viologen moiety in a molecule, the effective photoinduced intramolecular electron transfer from Pyro-a to the bonded viologen moiety occurred. Moreover, these molecules were applied as a photosensitizer in the system for visible-light driven hydrogen production with platinum nanoparticles via intramolecular reduction of the bonded viologen moiety. Efficient photoreduction of external methyl viologen and successive hydrogen production on platinum nanoparticles were achieved using the synthetic conjugate of Pyro-a with the viologen moiety as a photosensitizer. In particular, effective visible-light driven hydrogen production was accomplished using 3 and platinum nanoparticles via the reduction of external methyl viologen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. A. Patsoura, D. I. Kondarides and X. E. Verykios, Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes, Appl. Catal., B, 2006, 64(3–4), 171–191.

    Article  CAS  Google Scholar 

  2. P. Du, J. Schneider, P. Jarosz and R. Eisenberg, Photocatalytic generation of hydrogen from water using a platinum(II) terpyridyl acetylide chromophore, J. Am. Chem. Soc., 2006, 128(24), 7726–7727.

    Article  CAS  PubMed  Google Scholar 

  3. K. Kalyanasundaram, J. Kiwi and M. Grätzel, Hydrogen evolution from water by visible light, a homogeneous three component test system for redox catalysis, Helv. Chim. Acta, 1978, 61(7), 2720.

    CAS  Google Scholar 

  4. E. A. Malinka, G. L. Kamalov, S. V. Vodzinskii, V. I. Melnik and Z. I. Zhilina, Hydrogen production from water by visible light using zinc porphyrin-sensitized platinized titanium dioxide, J. Photochem. Photobiol., A, 1995, 90(2–3), 153–158.

    Article  CAS  Google Scholar 

  5. E. S. Da Silva, N. M. Moura, M. G. P. Neves, A. Coutinho, M. Prieto, C. G. Silva and J. L. Faria, Novel hybrids of graphitic carbon nitride sensitized with free-base meso-tetrakis (carboxyphenyl) porphyrins for efficient visible light photocatalytic hydrogen production, Appl. Catal., B, 2018, 221, 56–69.

    Article  CAS  Google Scholar 

  6. G. Li, M. F. Mark, H. Lv, D. W. McCamant and R. Eisenberg, Rhodamine-Platinum diimine dithiolate complex dyads as efficient and robust photosensitizers for light-driven aqueous proton reduction to hydrogen, J. Am. Chem. Soc., 2018, 140(7), 2575–2586.

    Article  CAS  PubMed  Google Scholar 

  7. E. R. Clark and D. M. Kurtz Jr., Photosensitized H2 production using a zinc porphyrin-substituted protein, platinum nanoparticles, and ascorbate with no electron relay: participation of good’s buffers, Inorg. Chem., 2017, 56(8), 4584–4593.

    Article  CAS  Google Scholar 

  8. N. Zhang, L. Wang, H. Wang, R. Cao, J. Wang, F. Bai and H. Fan, Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation, Nano Lett., 2018, 18(1), 560–566.

    Article  CAS  PubMed  Google Scholar 

  9. N. Manfredi, M. Monai, T. Montini, F. Peri, F. De Angelis, P. Fornasiero and A. Abbotto, Dye-sensitized photocatalytic hydrogen generation: efficiency enhancement by organic photosensitizer–coadsorbent intermolecular interaction, ACS Energy Lett., 2017, 3(1), 85–91.

    Article  CAS  Google Scholar 

  10. H. N. Kagalwala, D. N. Chirdon, I. N. Mills, N. Budwal and S. Bernhard, Light-driven hydrogen generation from micro-emulsions using metallosurfactant catalysts and oxalic acid, Inorg. Chem., 2017, 56(17), 10162–10171.

    CAS  Google Scholar 

  11. R. Ge, X. Li, B. Zhuang, S. Z. Kang, L. Qin and G. Li, Assembly mechanism and photoproduced electron transfer for a novel cubic Cu2O/tetrakis(4-hydroxyphenyl)porphyrin hybrid with visible photocatalytic activity for hydrogen evolution, Appl. Catal., B, 2017, 211, 296–304.

    Article  CAS  Google Scholar 

  12. S. Mei, J. Gao, Y. Zhang, J. Yang, Y. Wu, X. Wang, R. Zhao, X. Zhai, C. Hao, R. Li and J. Yan, Enhanced visible light photocatalytic hydrogen evolution over porphyrin hybridized graphitic carbon nitride, J. Colloid Interface Sci., 2017, 506, 58–65.

    Article  CAS  PubMed  Google Scholar 

  13. Y. Zhu, A. Marianov, H. Xu, C. Lang and Y. Jiang, Bimetallic Ag–Cu supported on graphitic carbon nitride nanotubes for improved visible-light photocatalytic hydrogen production, ACS Appl. Mater. Interfaces, 2018, 10(11), 9468–9477.

    CAS  Google Scholar 

  14. H. Lu, R. Hu, H. Bai, H. Chen, F. Lv, L. Liu, S. Wang and H. Tian, Efficient conjugated polymer–methyl viologen electron transfer system for controlled photo-driven hydrogen evolution, ACS Appl. Mater. Interfaces, 2017, 9(12), 10355–10359.

    CAS  Google Scholar 

  15. M. Natali, E. Badetti, E. Deponti, M. Gamberoni, F. A. Scaramuzzo, A. Sartorel and C. Zonta, Photoinduced hydrogen evolution with new tetradentate cobalt(II) complexes based on the TPMA ligand, Dalton Trans., 2016, 45(37), 14764–14773.

    Article  CAS  PubMed  Google Scholar 

  16. A. M. Beiler, D. Khusnutdinova, B. L. Wadsworth and G. F. Moore, Cobalt porphyrin–polypyridyl surface coatings for photoelectrosynthetic hydrogen production, Inorg. Chem., 2017, 56(20), 12178–12185.

    CAS  Google Scholar 

  17. A. A. Panagiotopoulos, E. G. Fasoulakis, E. E. Vardalachaki and A. G. Coutsolelos, Photocatalytic hydrogen production based on a water-soluble porphyrin derivative as sensitizer and a series of Wilkinson type complexes as catalysts, J. Porphyrins Phthalocyanines, 2016, 20(8–11), 1200–2006.

    Article  CAS  Google Scholar 

  18. E. R. Clark and D. M. Kurtz Jr., Photosensitized H2 generation from “one-pot” and “two-pot” assemblies of a zinc-porphyrin/platinum nanoparticle/protein scaffold, Dalton Trans., 2016, 45(2), 630–838.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Yuan, H. Lu, Z. Ji, J. Zhong, M. Ding, D. Chen, Y. Li, W. Tu, D. Cao, Z. Yu and Z. Zou, Enhanced visible-lightinduced hydrogen evolution from water in a noble-metalfree system catalyzed by ZnTCPP-MoS2/TiO2 assembly, Chem. Eng. J., 2015, 275, 8–15.

    Article  CAS  Google Scholar 

  20. E. Koposova, X. Liu, A. Pendin, B. Thiele, G. Shumilova, Y. Ermolenko, A. Offenhäusser and Y. Mourzina, Influence of meso-substitution of the porphyrin ring on enhanced hydrogen evolution in a photochemical system, J. Phys. Chem. C, 2016, 120(26), 13873–13890.

    Article  CAS  Google Scholar 

  21. Y. Sun, X.-F. Wang, G. Chen, C.-H. Zhan, O. Kitao, H. Tamiaki and S. Sasaki, Near-infrared absorption carboxylated chlorophyll-a derivatives for biocompatible dyesensitized hydrogen evolution, Int. J. Hydrogen Energy, 2017, 42, 15731–15738.

    Article  CAS  Google Scholar 

  22. Y. Sun, Y. Sun, C. Dall’Agnese, X.-F. Wang, G. Chen, O. Kitao, H. Tamiaki, K. Sakai, T. Ikeuchi and S. Sasaki, Dyad sensitizer of chlorophyll with indoline dye for panchromatic photocatalytic hydrogen evolution, ACS Appl. Energy Mater., 2018, 1(6), 2813–2820.

    CAS  Google Scholar 

  23. N. Kaji, S. Aono and I. Okura, Photoinduced hydrogen evolution with viologen-linked water-soluble zinc porphyrins, J. Mol. Catal., 1986, 36(3), 201–203.

    Article  CAS  Google Scholar 

  24. Y. Amao and I. Okura, Photoinduced hydrogen production with the system containing water-soluble viologen-linked porphyrins and hydrogenase, J. Mol. Catal. B: Enzym., 2002, 17(1), 9–21.

    Article  CAS  Google Scholar 

  25. N. Himeshima and Y. Amao, Photoinduced hydrogen production from cellulose derivative with chlorophyll-a and platinum nanoparticles system, Energy Fuels, 2003, 17(6), 1641–1644.

    Article  CAS  Google Scholar 

  26. Y. Tomonou and Y. Amao, Visible and near-IR light induced biohydrogen production using the system containing Mg chlorophyll-a, from Spirulina and colloidal platinum, BioMetals, 2003, 16(3), 419–424.

    Article  CAS  PubMed  Google Scholar 

  27. N. Sugiyama, M. Toyoda and Y. Amao, Photoinduced hydrogen production with chlorophyll-platinum nano-conjugated micellar system, Colloids Surf., A, 2006, 284285, 384–387.

    Article  CAS  Google Scholar 

  28. J. Hirota and I. Okura, Photoinduced intramolecular electron transfer in bisviologen-linked porphyrin in acetonitrile, J. Phys. Chem., 1993, 97(20), 6867–6870.

    Article  CAS  Google Scholar 

  29. Y. Amao, T. Kamachi and I. Okura, Synthesis and characterization of water soluble viologen linked zinc porphyrins, J. Photochem. Photobiol., A, 1996, 98(1–2), 59–64.

    Article  CAS  Google Scholar 

  30. Y. Amao, T. Hiraishi and I. Okura, Preparation and characterization of water soluble viologen-linked trisulfonato-phenylporphyrin (TPPSCnV), J. Mol. Catal. A: Chem., 1997, 126(1), 13–20.

    Article  CAS  Google Scholar 

  31. Y. Amao, Viologens for coenzymes of biocatalysts with the function of CO2 reduction and utilization, Chem. Lett., 2017, 46(6), 780–788.

    Article  CAS  Google Scholar 

  32. Y. Amao, Solar fuel production based on the artificial photosynthesis system, ChemCatChem, 2011, 3(3), 458–474.

    Article  CAS  Google Scholar 

  33. I. Okura, Hydrogenase and its application for photoinduced hydrogen evolution, Coord. Chem. Rev., 1985, 68, 53–99.

    CAS  Google Scholar 

  34. I. Okura, Application of hydrogenase for photoinduced hydrogen evolution, Biochimie, 1986, 68(1), 189–199.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Amao and I. Okura, Sensitization by Metal Complexes Towards Future Artificial Photosynthesis, in Photocatalysis, Kodansha Springer, 2002.

  36. H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth and K. Schaffner, Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria, Photochem. Photobiol., 1996, 63(1), 92–99.

    Article  CAS  Google Scholar 

  37. H. Tamiaki, S. Takeuchi, S. Tsudzuki, T. Miyatake and R. Tanikaga, Self-aggregation of synthetic zinc chlorins with a chiral 1-hydroxyethyl group as a model for in vivo epimeric bacteriochlorophyll-c and d aggregates, Tetrahedron, 1998, 54(24), 6699–6718.

    Article  CAS  Google Scholar 

  38. S. Ogasawara and H. Tamiaki, The primary formation of a cationic C10-pyridinio-chlorophyll-a derivative by chemical/electrochemical oxidation and the physico-chemical properties of regioisomeric meso-adducts, Bull. Chem. Soc. Jpn., 2018, 91(12), 1724–1730.

    Article  CAS  Google Scholar 

  39. T. Takahashi, S. Ogasawara, S. Echizen, Y. Shinozaki and H. Tamiaki, C31-Selective substitution of cationic N-heteroaromatic groups into a 3-vinylated chlorophyll-a derivative, Org. Biomol. Chem., 2019, 17(22), 5490–5495.

    Article  Google Scholar 

  40. T. Suzuka, T. Sekiguchi, N. Hayashi, H. Nishide, K. Koyaizu and N. Sano, JP Patent, 2013-137876, 2013.

  41. A. A. Krasnovsky Jr., M. E. Bashtanov, N. N. Drozdova, P. A. Liddell, A. L. Moore, T. A. Moore and D. Gust, Porphyrin and pyropheophorbide phosphorescence in synthetic molecules that mimic photosynthetic triplet energy transfer, J. Photochem. Photobiol., A, 1997, 102(2–3), 157–161.

    Article  CAS  Google Scholar 

  42. Y. Amao, T. Kamachi and I. Okura, Photoinduced hydrogen evolution with hydrogenase and water-soluble viologenlinked zinc porphyrins, J. Porphyrins Phthalocyanines, 1998, 2(3), 201–207.

    Article  CAS  Google Scholar 

  43. P. Keller and A. Moradpour, Is there a particle-size dependence for the mediation by colloidal redox catalysts of the light-induced hydrogen evolution from water?, J. Am. Chem. Soc., 1980, 102(24), 7193–7196.

    Article  CAS  Google Scholar 

  44. M. S. Matheson, P. C. Lee, D. Meisel and E. Pelizzetti, Kinetics of hydrogen production from methyl viologen radicals on colloidal platinum, J. Phys. Chem., 1983, 87(3), 394–399.

    Article  CAS  Google Scholar 

  45. J. H. Fuhrhop, W. Krüger and H. E. David, Hydrogen evolution from viologen radicals and from photochemically reduced tin(IV) porphyrins in the presence of colloidal platinum, Liebigs Ann. Chem., 1983, 1983(2), 204–210.

    Google Scholar 

  46. K. Sakai, Y. Kizaki, T. Tsubomura and K. Matsumoto, Homogeneous catalyses of mixed-valent octanuclear platinum complexes in photochemical hydrogen production from water, J. Mol. Catal., 1993, 79(1–3), 141–152.

    Article  CAS  Google Scholar 

  47. Y. Amao, T. Hiraishi and I. Okura, Photoinduced hydrogen evolution using water soluble viologen-linked trisulfonatophenylporphyrins (TPPSCnV) with hydrogenase, J. Mol. Catal. A: Chem., 1997, 126(1), 21–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Amao.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00176j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeyama, S., Hizume, S., Takahashi, T. et al. Visible-light driven hydrogen production using chlorophyll derivatives conjugated with a viologen moiety in the presence of platinum nanoparticles. Photochem Photobiol Sci 18, 2673–2681 (2019). https://doi.org/10.1039/c9pp00176j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00176j

Navigation