Skip to main content
Log in

Photophysical investigation of two emissive nucleosides exhibiting gigantic stokes shifts

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We report spectroscopic characterization of two emissive 2′-deoxycytidine analogues: 5-(5-phenylfuran-2-yl)-2′-deoxycytidine and 5-(1-phenyl-1H-pyrazol-3-yl)-2′-deoxycytidine. Their fluorescent properties were examined using a combined experimental and theory/simulation approach, where the latter was based on Born–Oppenheimer molecular dynamics and time-dependent density functional theory. The analogues were found to exhibit unusually large Stokes shifts in polar media (>100 nm), moderate fluorescence quantum yields, and their emissions were found to be very sensitive to the local dielectric environment. These two analogues of 2′-deoxycytidine thus hold a promising potential as probes in chemical biology. In addition, the accuracy of the theoretical models for determining the optical properties is validated, which opens up for a convenient way of assessing the potential of future probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nakatani and Y. Tor, Modified Nucleic Acids, Springer, 2016, vol. 31.

  2. M. Wilhelmsson and Y. Tor, Fluorescent Analogs of Biomolecular Building Blocks: Design and Applications, John Wiley & Sons, 2016.

  3. R. W. Sinkeldam, N. J. Greco and Y. Tor, Fluorescent analogs of biomolecular building blocks: design, properties, and applications, Chem. Rev., 2010, 110, 2579–2619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. G. Mata and N. W. Luedtke, Fluorescent probe for protoncoupled DNA folding revealing slow exchange of i-motif and duplex structures, J. Am. Chem. Soc., 2015, 137, 699–707.

    Article  CAS  PubMed  Google Scholar 

  5. S. Manna and S. G. Srivatsan, Fluorescence-based tools to probe G-quadruplexes in cell-free and cellular environments, RSC Adv., 2018, 8, 25673–25694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. E. Østergaard, D. C. Guenther, P. Kumar, B. Baral, L. Deobald, A. J. Paszczynski, P. K. Sharma and P. J. Hrdlicka, Pyrene-functionalized triazole-linked 2′-deoxyuridines – probes for discrimination of single nucleotide polymorphisms (SNPs), Chem. Commun., 2010, 46, 4929–4931.

    Article  CAS  Google Scholar 

  7. N. J. Greco and Y. Tor, Simple fluorescent pyrimidine analogues detect the presence of DNA abasic sites, J. Am. Chem. Soc., 2005, 127, 10784–10785.

    Article  CAS  PubMed  Google Scholar 

  8. M. Hattori, T. Ohki, E. Yanase and Y. Ueno, Fluorescence detection of single nucleotide polymorphisms using nucleic acid probe containing tricyclic base-linked acyclonucleoside, Bioorg. Med. Chem. Lett., 2012, 22, 253–257.

    Article  CAS  PubMed  Google Scholar 

  9. A. A. Beharry, S. Lacoste, T. R. O’Connor and E. T. Kool, Fluorescence monitoring of the oxidative repair of DNA alkylation damage by ALKBH3, a prostate cancer marker, J. Am. Chem. Soc., 2016, 138, 3647–3650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. S. Noé, Y. Xie and Y. Tor, Methods for Studying Nucleic Acid/Drug Interactions, CRC Press, 2016, pp. 178–201.

  11. Y. Xie, A. V. Dix and Y. Tor, FRET enabled real time detection of RNA-small molecule binding, J. Am. Chem. Soc., 2009, 131, 17605–17614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. W. Xu, K. M. Chan and E. T. Kool, Fluorescent nucleobases as tools for studying DNA and RNA, Nat. Chem., 2017, 9, 1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. M. Wilhelmsson, Fluorescent nucleic acid base analogues, Q. Rev. Biophys., 2010, 43, 159–183.

  14. J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen and K. Baumeister, A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides, Science, 1987, 238, 336–341.

    Article  CAS  PubMed  Google Scholar 

  15. D. D. Burns, K. L. Teppang, R. W. Lee, M. E. Lokensgard and B. W. Purse, Fluorescence turn-on sensing of DNA duplex formation by a tricyclic cytidine analogue, J. Am. Chem. Soc., 2017, 139, 1372–1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. P. Sandin, L. M. Wilhelmsson, P. Lincoln, V. E. Powers, T. Brown and B. Albinsson, Fluorescent properties of DNA base analogue tC upon incorporation into DNA – negligible influence of neighbouring bases on fluorescence quantum yield, Nucleic Acids Res., 2005, 33, 5019–5025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Preus, K. Kilså, L. M. Wilhelmsson and B. Albinsson, Photophysical and structural properties of the fluorescent nucleobase analogues of the tricyclic cytosine (tC) family, Phys. Chem. Chem. Phys., 2010, 12, 8881–8892.

    Article  CAS  PubMed  Google Scholar 

  18. L. M. Wilhelmsson, A. Holmén, P. Lincoln, P. E. Nielsen and B. Nordén, A Highly Fluorescent DNA Base Analogue that Forms Watson-Crick Base Pairs with Guanine, J. Am. Chem. Soc., 2001, 123, 2434–2435.

    Article  CAS  PubMed  Google Scholar 

  19. B. Dumat, M. Bood, M. S. Wranne, C. P. Lawson, A. F. Larsen, S. Preus, J. Streling, H. Gradén, E. Wellner, M. Grøtli, et al., Second-Generation Fluorescent Quadracyclic Adenine Analogues: Environment-Responsive Probes with Enhanced Brightness, Chem. –, Eur. J., 2015, 21, 4039–4048.

    Article  CAS  Google Scholar 

  20. A. F. Larsen, B. Dumat, M. S. Wranne, C. P. Lawson, S. Preus, M. Bood, H. Gradén, L. M. Wilhelmsson and M. Grøtli, Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design, Sci. Rep., 2015, 5, 12653.

    Article  CAS  Google Scholar 

  21. D. A. Berry, K.-Y. Jung, D. S. Wise, A. D. Sercel, W. H. Pearson, H. Mackie, J. B. Randolph and R. L. Somers, Pyrrolo-dC and pyrrolo-C: fluorescent analogs of cytidine and 2′-deoxycytidine for the study of oligonucleotides, Tetrahedron Lett., 2004, 45, 2457–2461.

    Article  CAS  Google Scholar 

  22. F. Wojciechowski and R. H. Hudson, Fluorescence and hybridization properties of peptide nucleic acid containing a substituted phenylpyrrolocytosine designed to engage guanine with an additional H-bond, J. Am. Chem. Soc., 2008, 130, 12574–12575.

    Article  CAS  PubMed  Google Scholar 

  23. A. Dumas and N. W. Luedtke, Highly fluorescent guanosine mimics for folding and energy transfer studies, Nucleic Acids Res., 2011, 39, 6825–6834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. L. Zilbershtein-Shklanovsky, M. Weitman, D. T. Major and B. Fischer, Rules for the design of highly fluorescent nucleoside probes: 8-(substituted cinnamyl)-adenosine analogues, J. Org. Chem., 2013, 78, 11999–12008.

    Article  CAS  PubMed  Google Scholar 

  25. S. De Ornellas, J. M. Slattery, R. M. Edkins, A. Beeby, C. G. Baumann and I. J. Fairlamb, Design and synthesis of fluorescent 7-deazaadenosine nucleosides containing π-extended diarylacetylene motifs, Org. Biomol. Chem., 2015, 13, 68–72.

    Article  PubMed  Google Scholar 

  26. P. Herdewijn, Modified Nucleosides: in Biochemistry, Biotechnology and Medicine, John Wiley & Sons, 2008.

  27. P. A. Hopkins, R. W. Sinkeldam and Y. Tor, Visibly emissive and responsive extended 6-aza-uridines, Org. Lett., 2014, 16, 5290–5293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. Fin, A. R. Rovira, P. A. Hopkins and Y. Tor, Emissive 5-Substituted Uridine Analogues, Springer, 2016, vol. 31, pp. 1–26.

  29. A. A. Tanpure and S. G. Srivatsan, Conformation-sensitive nucleoside analogues as topology-specific fluorescence turn-on probes for DNA and RNA G-quadruplexes, Nucleic Acids Res., 2015, 43, e149–e149.

  30. A. A. Tanpure, M. G. Pawar and S. G. Srivatsan, Fluorescent nucleoside analogs: probes for investigating nucleic acid structure and function, Isr. J. Chem., 2013, 53, 366–378.

    Article  CAS  Google Scholar 

  31. P. Kumar, M. Hornum, L. J. Nielsen, G. Enderlin, N. K. Andersen, C. Len, G. Hervé, G. Sartori and P. Nielsen, High-affinity RNA targeting by oligonucleotides displaying aromatic stacking and amino groups in the major groove. Comparison of triazoles and phenyl substituents, J. Org. Chem., 2014, 79, 2854–2863.

    Article  CAS  PubMed  Google Scholar 

  32. A. C. Sedgwick, L. Wu, H.-H. Han, S. D. Bull, X.-P. He, T. D. James, J. L. Sessler, B. Z. Tang, H. Tian and J. Yoon, Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents, Chem. Soc. Rev., 2018, 47, 8842–8880.

    Article  CAS  PubMed  Google Scholar 

  33. F. Zhou, J. Shao, Y. Yang, J. Zhao, H. Guo, X. Li, S. Ji and Z. Zhang, Molecular rotors as fluorescent viscosity sensors: molecular design, polarity sensitivity, dipole moments changes, screening solvents, and deactivation channel of the excited states, Eur. J. Org. Chem., 2011, 4773–4787.

  34. S.-C. Lee, J. Heo, H. C. Woo, J.-A. Lee, Y. H. Seo, C.-L. Lee, S. Kim and O.-P. Kwon, Fluorescent molecular rotors for viscosity sensors, Chem. –, Eur. J., 2018, 24, 13706–13718.

    Article  CAS  Google Scholar 

  35. S. Sasaki, G. P. Drummen and G.-I. Konishi, Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry, J. Mater. Chem. C, 2016, 4, 2731–2743.

    Article  CAS  Google Scholar 

  36. R. W. Sinkeldam, A. J. Wheat, H. Boyaci and Y. Tor, Emissive nucleosides as molecular rotors, ChemPhysChem, 2011, 12, 567–570.

    Article  CAS  PubMed  Google Scholar 

  37. M. Hornum, P. Kumar, P. Podsiadly and P. Nielsen, Increasing the stability of DNA: RNA duplexes by introducing stacking phenyl-substituted pyrazole, furan, and triazole moieties in the major groove, J. Org. Chem., 2015, 80, 9592–9602.

    Article  CAS  PubMed  Google Scholar 

  38. A. T. R. Williams, S. A. Winfield and J. N. Miller, Relative fluorescence quantum yields using a computercontrolled luminescence spectrometer, Analyst, 1983, 108, 1067–1071.

    Article  CAS  Google Scholar 

  39. I. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, Elsevier, 2012.

  40. D. A. Case, V. Babin, J. T. Berryman, R. M. Betz, Q. Cai, D. S. Cerutti, T. E. Cheatham, T. A. Darden, R. E. Duke, H. Gohlke, A. W. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry, A. Kovalenko, T. S. Lee, S. LeGrand, T. Luchko, R. Luo, B. Madej, K. M. Merz, F. Paesani, D. R. Roe, A. Roitberg, C. Sagui, R. Salomon-Ferrer, G. Seabra, C. L. Simmerling, W. Smith, J. Swails, R. C. Walker, J. Wang, R. M. Wolf, X. Wu and P. A. Kollman, Amber14, University of California, San Francisco, 2014.

  41. J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser and C. Simmerling, ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theory Comput., 2015, 11, 3696–3713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. F. Paesani, W. Zhang, D. A. Case, T. E. Cheatham III and G. A. Voth, An accurate and simple quantum model for liquid water, J. Chem. Phys., 2006, 125, 184507.

    Article  PubMed  CAS  Google Scholar 

  43. J.-P. Ryckaert, G. Ciccotti and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys., 1977, 23, 327–341.

    Article  CAS  Google Scholar 

  44. S. Hirata and M. Head-Gordon, Time-dependent density functional theory within the Tamm–Dancoff approximation, Chem. Phys. Lett., 1999, 314, 291–299.

    Article  CAS  Google Scholar 

  45. T. Yanai, D. P. Tew and N. C. Handy, A new hybrid exchange–correlation functional using the Coulombattenuating method (CAM-B3LYP), Chem. Phys. Lett., 2004, 393, 51–57.

    Article  CAS  Google Scholar 

  46. W. J. Hehre, R. Ditchfield and J. A. Pople, Self Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian–Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, J. Chem. Phys., 1972, 56, 2257–2261.

    Article  CAS  Google Scholar 

  47. P. C. Hariharan and J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, Theor. Chem. Acc., 1973, 28, 213–222.

    Article  CAS  Google Scholar 

  48. W. L. Jorgensen, Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water, J. Am. Chem. Soc., 1981, 103, 335–340.

    Article  CAS  Google Scholar 

  49. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 1983, 79, 926–935.

    Article  CAS  Google Scholar 

  50. A. Klamt and G. Schüürmann, COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Soc., Perkin Trans. 2, 1993, 799–805.

  51. TeraChem v1.9, PetaChem, LLC (2009, 2015). See http://www.petachem.com.

  52. I. S. Ufimtsev and T. J. Martinez, Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics, J. Chem. Theory Comput., 2009, 5, 2619–2628.

    Article  CAS  PubMed  Google Scholar 

  53. C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry, John Wiley & Sons, 2011.

  54. N. J. Greco and Y. Tor, Furan decorated nucleoside analogues as fluorescent probes: synthesis, photophysical evaluation, and site-specific incorporation, Tetrahedron, 2007, 63, 3515–3527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. C. Liu and C. T. Martin, Fluorescence characterization of the transcription bubble in elongation complexes of T7 RNA polymerase, J. Mol. Biol., 2001, 308, 465–475.

    Article  CAS  PubMed  Google Scholar 

  56. D. Dziuba, P. Pospíšil, J. Matyašovský, J. Brynda, D. Nachtigallová, L. Rulíšek, R. Pohl, M. Hof and M. Hocek, Solvatochromic fluorene-linked nucleoside and DNA as color-changing fluorescent probes for sensing interactions, Chem. Sci., 2016, 7, 5775–5785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. D. Dziuba, P. Jurkiewicz, M. Cebecauer, M. Hof and M. Hocek, A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy, Angew. Chem., Int. Ed., 2015, 55, 174–178.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Kongsted.

Additional information

Electronic supplementary information (ESI) available: Modelling data, absorption spectra & additional charts. See DOI: 10.1039/C9PP00172G

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stendevad, J., Hornum, M., Wüstner, D. et al. Photophysical investigation of two emissive nucleosides exhibiting gigantic stokes shifts. Photochem Photobiol Sci 18, 1858–1865 (2019). https://doi.org/10.1039/c9pp00172g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00172g

Navigation