Issue 32, 2019

Unveiling the thermolysis natures of ZIF-8 and ZIF-67 by employing in situ structural characterization studies

Abstract

The thermolysis routes of two isostructural metal–organic framework compounds (Zn-based ZIF-8 and Co-based ZIF-67) are investigated based on temperature-dependent and time-dependent in situ Fourier transform infrared (FTIR) spectroscopy and in situ X-ray diffraction data, as well as thermogravimetric-differential scanning calorimetry (TG-DSC) analyses and density functional theory (DFT) calculations. These data highlight thermolysis effects on different vibrations and dissociations within specific atomic moieties. The coordination differences between Zn–N and Co–N lead to the distinct thermolysis routes of ZIF-8 and ZIF-67. ZIF-8 is easily deformed during heating while decomposes at a higher temperature due to the saturated Zn–N coordination. ZIF-67, however, does not deform during heating due to the stronger Co–N bonds, but easily reacts with oxygen due to the unsaturated Co–N bonds. Our results demonstrate that in situ FTIR paired with in situ XRD is a powerful technique for MOF thermolysis investigation, and we suggest that the thermolysis mechanisms of MOFs may be unveiled by investigating a series of MOFs having different coordination types using in situ characterisation methods.

Graphical abstract: Unveiling the thermolysis natures of ZIF-8 and ZIF-67 by employing in situ structural characterization studies

Supplementary files

Article information

Article type
Paper
Submitted
08 May 2019
Accepted
21 Jul 2019
First published
22 Jul 2019

Phys. Chem. Chem. Phys., 2019,21, 17571-17577

Unveiling the thermolysis natures of ZIF-8 and ZIF-67 by employing in situ structural characterization studies

C. Wu, D. Xie, Y. Mei, Z. Xiu, K. M. Poduska, D. Li, B. Xu and D. Sun, Phys. Chem. Chem. Phys., 2019, 21, 17571 DOI: 10.1039/C9CP02582K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements