Issue 27, 2018, Issue in Progress

Single-crystalline perovskite wafers with a Cr blocking layer for broad and stable light detection in a harsh environment

Abstract

Herein, ultrathin (∼35 μm) CH3NH3PbI3 (MAPbI3) single-crystalline wafers have been successfully prepared by using an appropriate geometry-regulated dynamic-flow reaction system. The measurement results proved that the obtained wafers have high crystallinity, and showed broad light absorption from ultraviolet to near infrared (850 nm) which can be attributed to the indirect bandgap. Straight after, such an MAPbI3 wafer was used to fabricate high-quality photodetectors (PDs). On account of its faster carrier transport and significantly reduced defect density, the device exhibits a high photoresponse (R) of 5 A/W and short on/off response (0.039 s/0.017 s). Interestingly, by introducing a Cr interlayer between the MAPbI3 wafer and the Au electrode to avoid the migration of Au, the PD shows nearly no degradation when it works at 200 °C. Furthermore, the device performance shows very little degradation over the course of 60 days of storage under ambient conditions owing to its lack of grain boundaries. We believe the strategy reported here is very promising for achieving broad photodetection in a harsh environment.

Graphical abstract: Single-crystalline perovskite wafers with a Cr blocking layer for broad and stable light detection in a harsh environment

Supplementary files

Article information

Article type
Paper
Submitted
28 Mar 2018
Accepted
15 Apr 2018
First published
19 Apr 2018
This article is Open Access
Creative Commons BY license

RSC Adv., 2018,8, 14848-14853

Single-crystalline perovskite wafers with a Cr blocking layer for broad and stable light detection in a harsh environment

Q. Wang, D. Bai, Z. Jin and S. (. Liu, RSC Adv., 2018, 8, 14848 DOI: 10.1039/C8RA02709A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements