Skip to main content

Advertisement

Log in

Interactive effects of solar UV radiation and climate change on material damage

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Solar UV radiation adversely affects the properties of organic materials used in construction, such as plastics and wood. The outdoor service lifetimes of these materials are influenced by their rates of degradation under solar UV radiation as well as by other climate factors such as temperature, moisture, and atmospheric pollutants. While recovery of the stratospheric ozone layer is expected, local increases in UV radiation are still likely to occur, especially in the tropics, but also elsewhere because of climate change effects. Such increases, when taken together with an increased ambient temperature due to climate change, can significantly shorten the service lifetimes of organic building materials. Several proven technologies, including the use of UV stabilisers, surface treatments or coatings have been developed over the years to mitigate these adverse effects. While these technologies should be able to compensate for any realistic future UV radiation and climate change scenarios, they will also add significantly to the lifetime cost of material in relevant products. Shorter outdoor lifetime of the plastic components in photovoltaic (PV) modules is a serious concern in the solar energy industry. To ensure module durability over the full service-lifetime (of about ~20 years) of the light-harvesting PV components, better stabilisation technologies are being investigated. The present trend towards more environmentally sustainable materials in building, and environmental impact of additives such as stabilisers, need to be considered in addition to their engineering performance. This may require the phasing out of some conventional additives used in plastics as well as substituting wood or other materials in place of plastics in buildings. Depending on the relative costs of mitigation, substituting more UV-stable materials for conventional ones in outdoor products may also be a viable option with some categories of products. Neither the global cost of mitigation of the effects of climate change on materials nor the long-term sustainability of the technologies available for the purpose, have been estimated. Plastic waste and litter exposed outdoors to solar UV radiation over extended periods undergo cracking and fragmentation into small pieces (of micro- and nano-scale size). Release of these fragments into the environment, particularly in the aquatic environment, poses a potential threat to marine biota. Already several hundred of species are known to ingest these fragments that can potentially accumulate additives and pollutants from water. This is a potential threat to humans because 25% of fish marketed for human consumption have been reported to contain microplastics in their digestive systems. The focus of this assessment is on recent advances in understanding the mechanisms of UV-radiation-induced degradation in materials and in assessing emerging technologies for their stabilisation against outdoor UV-degradation. A better understanding of the mechanisms of degradation will allow for innovative stabilisation approaches to be developed. Also assessed is information on the sustainability of the available and emerging UV stabilisation technologies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO, Global Forest Products: Facts and Figures 2016, Food and Agricultural Organization of the United Nations, http://www.fao.org/forestry/statistics/80938/en/, updated, accessed April, 2018.

  2. Plastics Insight, Polyvinyl Chloride (PVC) Properties, Production, Price, Market, and Uses, Plastics Insight, https://www.plasticsinsight.com/resin-intelligence/resin-prices/pvc/, updated, accessed November.

  3. A. F. Bais, G. Bernhard, R. L. McKenzie, P. J. Aucamp, P. J. Young, M. Ilyas, P. Jöckel and M. Deushi, Ozone-climate interactions and effects on solar ultraviolet radiation, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90059K.

  4. R. M. Lucas, S. Yazar, A. R. Young, M. Norval, F. R. de Gruijl, Y. Takizawa, L. E. Rhodes, C. A. Sinclair and R. E. Neale, Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate, Photochem. Photobiol. Sci., 2019, 18, DOI:10.1039/C8PP90060D.

  5. E. Moretti, E. Belloni and E. Lascaro, The influence of solar control films on energy and daylighting performance by means of experimental data and preliminary unsteady simulations, Energy Procedia, 2015, 78, 340–345.

    Article  Google Scholar 

  6. S. Agarwal and R. K. Gupta, Plastics in buildings and construction, in Applied Plastics Engineering Handbook (Second Edition), ed. M. Kutz, Elsevier, Amsterdam, 2017, pp. 635–649.

    Book  Google Scholar 

  7. C. Kavanaugh, Vinyl siding gets a makeover to remain top choice in cladding, in Plastic News, Vinyl Siding Institute, Washington DC, 2015.

    Google Scholar 

  8. H. Selin, S. E. Keane, S. Wang, N. E. Selin, K. Davis and D. Bally, Linking science and policy to support the implementation of the Minamata Convention on Mercury, Ambio, 2018, 47, 198–215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. P. Johnston, N. Carthey and G. J. Hutchings, Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination, J. Am. Chem. Soc, 2015, 137, 14548–14557.

    Article  CAS  PubMed  Google Scholar 

  10. P. V. Mercea, C. Losher, M. Petrasch and V. Toşa, Migration of stabilizers and plasticizer from recycled poly(vinyl chloride), J. Vinyl Addit. Technol., 2018, 24, E112–E124.

  11. D. Liu, Y. Li, Y. Qian, Y. Xiao, S. Du and X. Qiu, Synergistic antioxidant performance of lignin and quercetin mixtures, ACS Sustainable Chem. Eng., 2017, 5, 8424–8428.

    Article  CAS  Google Scholar 

  12. S. Lee, M. S. Park, J. Shin and Y.-W. Kim, Effect of the individual and combined use of cardanol-based plasticizers and epoxidized soybean oil on the properties of PVC, Polym. Degrad. Stab., 2018, 147, 1–11.

    Article  CAS  Google Scholar 

  13. A. Greco, F. Ferrari and A. Maffezzoli, UV and thermal stability of soft PVC plasticized with cardanol derivatives, J. Clean. Prod., 2017, 164, 757–764.

    Article  CAS  Google Scholar 

  14. Vinyl Plus, Reporting on 2017 Activities, https://vinylplus.eu/progress/annual-progress, updated, accessed November 2018.

  15. D. N.-S. Hon and N. Shiraishi, Wood and Cellulosic Chemistry, Revised, and Expanded, CRC Press, Boca Raton, FL, 2000.

    Book  Google Scholar 

  16. L. Tolvaj, C.-M. Popescu, Z. Molnar and E. Preklet, Effects of air relative humidity and temperature on photodegradation processes in beech and spruce wood, BioResources, 2015, 11, 296–305.

    Article  CAS  Google Scholar 

  17. V. Živković, M. Arnold, K. K. Pandey, K. Richter and H. Turkulin, Spectral sensitivity in the photodegradation of fir wood (Abies alba Mill.) surfaces: correspondence of physical and chemical changes in natural weathering, Wood Sci. Technol., 2016, 50, 989–1002.

    Google Scholar 

  18. J. F. Bornman, P. W. Barnes, T. M. Robson, S. A. Robinson, M. A. K. Jansen, C. L. Ballaré and S. D. Flint, Linkages between stratospheric ozone, UV radiation, and climate change and their implications for terrestrial ecosystems, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90061B.

  19. B. Sulzberger, A. T. Austin, R. M. Cory, R. G. Zepp and N. D. Paul, Solar UV radiation in a changing world: Roles of cryosphere-land-water-atmosphere interfaces in global biogeochemical cycles, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90063A.

  20. S. S. Ali, I. A. Qazi, M. Arshad, Z. Khan, T. C. Voice and C. T. Mehmood, Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes, Environ. Nanotechnol. Monit. Manag., 2016, 5, 44–53.

    Article  CAS  Google Scholar 

  21. D. Gibbs, R. Austin and D. Smith, Durability of Polyester Geotextiles Subjected to Australian Outdoor and Accelerated Weathering, in 7th International Congress on Environmental Geotechnics, Melbourne, Australia, 2014, pp. 1–8.

    Google Scholar 

  22. W. Yagoubi, A. Abdelhafidi, M. Sebaa and S. Chabira, Identification of carbonyl species of weathered LDPE films by curve fitting and derivative analysis of IR spectra, Polym. Test., 2015, 44, 37–48.

    Article  CAS  Google Scholar 

  23. V. Massardier and M. Louizi, Photodegradation of a polypropylene filled with lanthanide complexes, Polímeros, 2015, 25, 515–522.

    Article  Google Scholar 

  24. K. N. Fotopoulou and H. K. Karapanagioti, Degradation of Various Plastics in the Environment. Hazardous Chemicals Associated with Plastics in the Marine Environment, in The Handbook of Environmental Chemistry, ed. H. Takada and H. Karapanagioti, Springer, Cham, 2017, vol. 78, pp. 71–92, ISBN 978-3-319-95568-1.

  25. M. C. Timar, A. M. Varodi and L. Gurău, Comparative study of photodegradation of six wood species after short-time UV exposure, Wood Sci. Technol., 2016, 50, 135–163.

    Article  CAS  Google Scholar 

  26. D. Varga, L. Tolvaj, S. Tsuchikawa, L. Bejo and E. Preklet, Temperature dependence of wood photodegradation monitored by infrared spectroscopy, J. Photochem. Photobiol., A, 2017, 348, 219–225.

    Article  CAS  Google Scholar 

  27. T.-C. Chang, H.-T. Chang, C.-L. Wu and S.-T. Chang, Influences of extractives on the photodegradation of wood, Polym. Degrad. Stab., 2010, 95, 516–521.

    Article  CAS  Google Scholar 

  28. Y. Ouadou, D. Aliouche, M.-F. Thevenon and M. Djillali, Characterization and photodegradation mechanism of three Algerian wood species, J. Wood Sci., 2017, 63, 288–294.

    Article  CAS  Google Scholar 

  29. G. Wypych, Handbook of UV Degradation and Stabilization, ChemTech, Toronto, 2015.

    Google Scholar 

  30. A. Adelhafidi, I. Babaghayou, S. Chabira and M. Sebaa, Impact of solar radiation effects on the physicochemical properties of polyethylene (PE) plastic film, Procedia Soc. Behav. Sci., 2015, 195, 2210–2217.

    Article  Google Scholar 

  31. H. J. Jeon and M. N. Kim, Degradation of linear low density polyethylene (LLDPE) exposed to UV-irradiation, Eur. Polym. J., 2014, 52, 146–153.

    Article  CAS  Google Scholar 

  32. Y. Lv, Y. Huang, M. Kong, Q. Yang and G. Li, Multivariate correlation analysis of outdoor weathering behavior of polypropylene under diverse climate scenarios, Polym. Test., 2017, 64, 65–76.

    Article  CAS  Google Scholar 

  33. J. Xiong, X. Liao, J. Zhu, Z. An, Q. Yang, Y. Huang and G. Li, Natural weathering mechanism of isotatic polypropylene under different outdoor climates in China, Polym. Degrad. Stab., 2017, 146, 212–222.

    Article  CAS  Google Scholar 

  34. L. Marsich, A. Ferluga, L. Cozzarini, M. Caniato, O. Sbaizero and C. Schmid, The effect of artificial weathering on PP coextruded tape and laminate, Composites, Part A, 2017, 95, 370–376.

    Article  CAS  Google Scholar 

  35. B. M. Imane, A. Asma, C. S. Fouad and S. Mohamed, Weathering effects on the microstructure morphology of low density polyethylene, Procedia Soc. Behav. Sci., 2015, 195, 2228–2235.

    Article  Google Scholar 

  36. Y. Lv, Y. Huang, J. Yang, M. Kong, H. Yang, J. Zhao and G. Li, Outdoor and accelerated laboratory weathering of polypropylene: A comparison and correlation study, Polym. Degrad. Stab., 2015, 112, 145–159.

    Article  CAS  Google Scholar 

  37. K. A. Jassim, W. H. Jassim and S. H. Mahdi, The effect of sunlight on medium density polyethylene water pipes, Energy Procedia, 2017, 119, 650–655.

    Article  CAS  Google Scholar 

  38. G. Bonifazi, L. Calienno, G. Capobianco, A. L. Monaco, C. Pelosi, R. Picchio and S. Serranti, Modeling color and chemical changes on normal and red heart beech wood by reflectance spectrophotometry, Fourier Transform Infrared spectroscopy and hyperspectral imaging, Polym. Degrad. Stab., 2015, 113, 10–21.

    Article  CAS  Google Scholar 

  39. G. Bonifazi, L. Calienno, G. Capobianco, A. L. Monaco, C. Pelosi, R. Picchio and S. Serranti, A new approach for the modelling ofchestnut wood photo-degradation monitored by different spectroscopic techniques, Environ. Sci. Pollut. Res., 2017, 24, 13874–13884.

    Article  CAS  Google Scholar 

  40. Y. Liu, L. Shao, J. Gao, H. Guo, Y. Chen, Q. Cheng and B. K. Via, Surface photo-discoloration and degradation of dyed wood veneer exposed to different wavelengths of artificial light, Appl. Surf. Sci., 2015, 331, 353–361.

    Article  CAS  Google Scholar 

  41. A. L. Catto, L. S. Montagna, S. H. Almeida, R. M. Silveira and R. M. Santana, Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay, Int. Biodeterior. Biodegrad., 2016, 109, 11–22.

    Article  CAS  Google Scholar 

  42. A. Heikkilä and P. Kärhä, Photoyellowing revisited: Determination of an action spectrum of newspaper, Polym. Degrad. Stab., 2014, 99, 190–195.

    Article  CAS  Google Scholar 

  43. L. Tolvaj, R. Nemeth, Z. Pasztory, L. Bejo and P. Takats, Colour stability of thermally modified wood during short-term photodegradation, BioResources, 2014, 9, 6644–6651.

    Article  CAS  Google Scholar 

  44. Y. S. Kim, K. H. Lee and J. S. Kim, Weathering characteristics of bamboo (Phyllostachys puberscence) exposed to outdoors for one year, J. Wood Sci., 2016, 62, 332–338.

    Google Scholar 

  45. T. Kanbayashi, Y. Kataoka, A. Ishikawa, M. Matsunaga, M. Kobayashi and M. Kiguchi, Depth profiling of photo-degraded wood surfaces by confocal Raman microscopy, J. Wood Sci., 2018, 64, 169–172.

    Article  CAS  Google Scholar 

  46. T.-C. Chang and S.-T. Chang, Multiple photostabilization actions of heartwood extract from Acacia confusa, Wood Sci. Technol., 2017, 51, 1133–1153.

  47. M. Zborowska, A. Stachowiak-Wencek, M. Nowaczyk-Organista, B. Waliszewska and W. Prądzyński, Analysis of photodegradation process of Pinus sylvestris L. wood after treatment with acid and alkaline buffers and light irradiation, BioResources, 2015, 10, 2057–2066.

    Article  Google Scholar 

  48. A. Cogulet, P. Blanchet and V. Landry, Wood degradation under UV irradiation: A lignin characterization, J. Photochem. Photobiol., B, 2016, 158, 184–191.

    Article  CAS  Google Scholar 

  49. A. Hazarika and T. K. Maji, Ultraviolet resistance and other physical properties of softwood polymer nano-composites reinforced with ZnO nanoparticles and nano-clay, Wood Mater. Sci. Eng., 2017, 12, 24–39.

    Article  CAS  Google Scholar 

  50. B. S. Gupta, B. P. Jelle, P. J. Hovde and T. Gao, Wood coating failures against natural and accelerated climates, in Proceedings of the Institution of Civil Engineers Construction Materials, vol. 168, February 2015, pp. 3–15.

  51. T. Volkmer, M. Noël, M. Arnold and J. Strautmann, Analysis of lignin degradation on wood surfaces to create a UV-protecting cellulose rich layer, Int. Wood Prod. J., 2016, 7, 156–164.

    Article  Google Scholar 

  52. C. Salas, R. Moya and L. Vargas-Fonseca, Optical performance of finished and unfinished tropical timbers exposed to ultraviolet light in the field in Costa Rica, Wood Mater. Sci. Eng., 2016, 11, 62–78.

    Article  CAS  Google Scholar 

  53. L. Calienno, C. Pelosi, R. Picchio, G. Agresti, U. Santamaria, F. Balletti and A. L. Monaco, Light-induced color changes and chemical modification of treated and untreated chestnut wood surface, Stud. Conserv., 2015, 60, 131–139.

    Article  CAS  Google Scholar 

  54. G. Capobianco, M. P. Bracciale, D. Sali, F. Sbardella, P. Belloni, G. Bonifazi, S. Serranti, M. L. Santarelli and M. C. Guidi, Chemometrics approach to FT-IR hyperspectral imaging analysis of degradation products in artwork cross-section, Microchem. J., 2017, 132, 69–76.

    Article  CAS  Google Scholar 

  55. L. Reinprecht, M. Mamoñová, M. Pánek and F. Kacík, The impact of natural and artificial weathering on the visual, colour and structural changes of seven tropical woods, Eur.J. Wood Wood Prod., 2018, 76, 175–190.

    Article  CAS  Google Scholar 

  56. Zion Market Report, Wood Plastic Composites Market (Polyethylene, Polypropylene, Polyvinyl Chloride and Others) for Building & Construction, Automotive, Electrical and Other Applications: Global Market Perspective, Comprehensive Analysis and Forecast, 2016–2022, Zion Market Research, https://www.zionmarketresearch.com/report/wood-plastic-composites-market, updated, accessed November.

  57. C. Homkhiew, T. Ratanawilai and W. Thongruang, Effects of natural weathering on the properties of recycled polypropylene composites reinforced with rubberwood flour, Ind. Crops Prod., 2014, 56, 52–59.

    Article  CAS  Google Scholar 

  58. T.-H. Yang, T.-H. Yang, W.-C. Chao and S.-Y. Leu, Characterization of the property changes of extruded wood-plastic composites during year round subtropical weathering, Constr. Build. Mater., 2015, 88, 159–168.

    Article  Google Scholar 

  59. Y. Chen, N. M. Stark, M. A. Tshabalala, J. Gao and Y. Fan, Weathering characteristics of wood plastic composites reinforced with extracted or delignified wood flour, Materials, 2016, 9, 610.

    Article  PubMed Central  CAS  Google Scholar 

  60. D. Friedrich and A. Luible, Investigations on ageing of wood-plastic composites for outdoor applications: A metaanalysis using empiric data derived from diverse weathering trials, Constr. Build. Mater., 2016, 124, 1142–1152.

    Article  Google Scholar 

  61. S. Mahzan, M. Fitri and M. Zaleha, UV radiation effect towards mechanical properties of Natural Fibre Reinforced Composite material: A Review, in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2017, vol. 165, p. 012021.

  62. D. Rasouli, N. T. Dintcheva, M. Faezipour, F. P. La Mantia, M. R. M. Farahani and M. Tajvidi, Effect of nano zinc oxide as UV stabilizer on the weathering performance of wood-polyethylene composite, Polym. Degrad. Stab., 2016, 133, 85–91.

    Article  CAS  Google Scholar 

  63. I. Turku and T. Kärki, Accelerated weathering of fire-retarded wood-polypropylene composites, Composites, Part A, 2016, 81, 305–312.

    Article  CAS  Google Scholar 

  64. J. S. Fabiyi, A. G. McDonald, M. P. Wolcott and P. R. Griffiths, Wood plastic composites weathering: Visual appearance and chemical changes, Polym. Degrad. Stab., 2008, 93, 1405–1414.

    Article  CAS  Google Scholar 

  65. S. Migneault, A. Koubaa, P. Perré and B. Riedl, Effects of wood fiber surface chemistry on strength of wood-plastic composites, Appl. Surf. Sci., 2015, 343, 11–18.

    Article  CAS  Google Scholar 

  66. L. Soccalingame, D. Perrin, J.-C. Bénézet, S. Mani, F. Coiffier, E. Richaud and A. Bergeret, Reprocessing of artificial UV-weathered wood flour reinforced polypropylene composites, Polym. Degrad. Stab., 2015, 120, 313–327.

    Article  CAS  Google Scholar 

  67. F. Chen, W. Liu, S. I. Seyed Shahabadi, J. Xu and X. Lu, Sheet-like lignin particles as multifunctional fillers in polypropylene, ACS Sustainable Chem. Eng., 2016, 4, 4997–5004.

    Article  CAS  Google Scholar 

  68. C. Badji, J. Beigbeder, H. Garay, A. Bergeret, J.-C. Bénézet and V. Desauziers, Correlation between artificial and natural weathering of hemp fibers reinforced polypropylene biocomposites, Polym. Degrad. Stab., 2018, 148, 117–131.

    Article  CAS  Google Scholar 

  69. Y. Li, H. Huang, G. Wu and Z. Chang, Straw degradation behaviors under different conditions of relative air humidity and ultraviolet-A irradiation, BioResources, 2016, 11, 9255–9272.

    CAS  Google Scholar 

  70. O. Raccurt, C. Delord, C. Bouquet and R. Couturier, Correlation between solar mirror degradation and colorimetric measurement of protective back layer, Energy Procedia, 2014, 49, 1700–1707.

    Article  Google Scholar 

  71. W. Baker, K. McCauley and J.-s. Tsang, Sustaining the unsustainabile: Mitigation and monitoring for modern materials, AIC News, 2015, 40, 1–6.

    Google Scholar 

  72. J. Tocháček and Z. Vrátníčková, Polymer life-time prediction: The role of temperature in UV accelerated ageing of polypropylene and its copolymers, Polym. Test, 2014, 36, 82–87.

    Article  CAS  Google Scholar 

  73. G. Pastorelli, C. Cucci, O. Garcia, G. Piantanida, A. Elnaggar, M. Cassar and M. Strlič, Environmentally induced colour change during natural degradation of selected polymers, Polym. Degrad. Stab., 2014, 107, 198–209.

    Article  CAS  Google Scholar 

  74. K. A. Smeland, K. H. Liland, J. Sandak, A. Sandak, L. R. Gobakken, T. K. Thiis and I. Burud, Near infrared hyperspectral imaging in transmission mode: assessing the weathering of thin wood samples, J. Near Infrared Spectrosc., 2016, 24, 595–604.

    Article  CAS  Google Scholar 

  75. G. Capobianco, L. Calienno, C. Pelosi, M. Scacchi, G. Bonifazi, G. Agresti, R. Picchio, U. Santamaria, S. Serranti and A. L. Monaco, Protective behaviour monitoring on wood photo-degradation by spectroscopic techniques coupled with chemometrics, Spectrochim. Acta, Part A, 2017, 172, 34–42.

    Article  CAS  Google Scholar 

  76. B. C. Kielmann and C. Mai, Application and artificial weathering performance of translucent coatings on resintreated and dye-stained beech-wood, Prog. Org. Coat., 2016, 95, 54–63.

    Article  CAS  Google Scholar 

  77. J. Zhang, D. P. Kamdem and A. Temiz, Weathering of copper–amine treated wood, Appl. Surf. Sci., 2009, 256, 842–846.

    Article  CAS  Google Scholar 

  78. S. Isaji and Y. Kojima, Application of copper monoethanolamine solutions as primers for semitransparent exterior wood stains, Eur. J. Wood Wood Prod., 2017, 75, 305–314.

    Article  CAS  Google Scholar 

  79. M. Humar, F. Pohleven and D. Žlindra, Influence of water, properties on leaching of copper-based preservatives from treated wood, Wood Res., 2006, 51, 69–76.

    CAS  Google Scholar 

  80. R. Rowell, Mechanism of exterior coating performance of acetylated wood, in Lignocellulosic Fibre and Biomass-Based Composite Materials, ed. M. Jawaid, P. M. Tahir and N. Saba, Woodhead Publishing, Duxford, UK, 2017, pp. 409–422.

    Book  Google Scholar 

  81. K. K. Pandey and K. Srinivas, Performance of polyurethane coatings on acetylated and benzoylated rubberwood, Eur. J. Wood Wood Prod., 2015, 73, 111–120.

    Article  CAS  Google Scholar 

  82. G. B. Nagarajappa and K. K. Pandey, UV resistance and dimensional stability of wood modified with isopropenyl acetate, J. Photochem. Photobiol., B, 2016, 155, 20–27.

    Article  CAS  Google Scholar 

  83. N. Giridhar, K. Pandey, B. Prasad, S. S. Bisht and H. Vagdevi, Dimensional stabilization of wood by chemical modification using isopropenyl acetate, Maderas: Cienc. Tecnol., 2017, 19, 15–20.

    CAS  Google Scholar 

  84. B. N. Giridhar and K. K. Pandey, Accelerated weathering and fungal resistance of wood modified with isopropenyl acetate, in International Research Group on Wood protection, Document No IRG/WP 16–40764, International Research Group on Wood protection, Stockholm, Sweden, 2016.

    Google Scholar 

  85. D. Rosu, R. Bodîrlău, C. A. Teacä, L. Rosu and C. D. Varganici, Epoxy and succinic anhydride functionalized soybean oil for wood protection against UV light action, J. Clean. Prod., 2016, 112, 1175–1183.

    Article  CAS  Google Scholar 

  86. S. K. Olsson, M. Johansson, M. Westin and E. Östmark, Reactive UV-absorber and epoxy functionalized soybean oil for enhanced UV-protection of clear coated wood, Polym. Degrad. Stab., 2014, 110, 405–414.

    Article  CAS  Google Scholar 

  87. M. Jebrane, T. Franke, N. Terziev and D. Panov, Natural weathering of Scots pine (Pinus sylvestris L.) wood treated with epoxidized linseed oil and methyltriethoxysilane, Wood Mater. Sci. Eng., 2017, 12, 220–227.

    CAS  Google Scholar 

  88. B. Forsthuber, C. Schaller and G. Grüll, Evaluation of the photo stabilising efficiency of clear coatings comprising organic UV absorbers and mineral UV screeners on wood surfaces, Wood Sci. Technol., 2013, 47, 281–297.

    Article  CAS  Google Scholar 

  89. L. Passauer, J. Prieto, M. Müller, M. Rössler, J. Schubert and M. Beyer, Novel color stabilization concepts for decorative surfaces of native dark wood and thermally modified timber, Prog. Org. Coat., 2015, 89, 314–322.

    Article  CAS  Google Scholar 

  90. K. Candelier, M.-F. Thevenon, A. Petrissans, S. Dumarcay, P. Gerardin and M. Petrissans, Control of wood thermal treatment and its effects on decay resistance: A review, Ann. For. Sci., 2016, 73, 571–583.

    Article  Google Scholar 

  91. H. Shen, J. Cao, W. Sun and Y. Peng, Influence of post-extraction on photostability of thermally modified Scots pine wood during artificial weathering, BioResources, 2016, 11, 4512–4525.

    CAS  Google Scholar 

  92. L. Todaro, M. D’Auria, F. Langerame, A. M. Salvi and A. Scopa, Surface characterization of untreated and hydro-thermally pre-treated Turkey oak woods after UV-C irradiation, Surf. Interface Anal, 2015, 47, 206–215.

    Article  CAS  Google Scholar 

  93. E. D. Tomak, D. Ustaomer, S. Yildiz and E. Pesman, Changes in surface and mechanical properties of heat treated wood during natural weathering, Measurement, 2014, 53, 30–39.

    Article  Google Scholar 

  94. M. Altgen and H. Militz, Photodegradation of thermally-modified Scots pine and Norway spruce investigated on thin micro-veneers, Eur. J. Wood Wood Prod., 2016, 74, 185–190.

  95. D. Cirule, A. Meija-Feldmane, E. Kuka, B. Andersons, N. Kurnosova, A. Antons and H. Tuherm, Spectral sensitivity of thermally modified and unmodified wood, BioResources, 2015, 11, 324–335.

    Article  CAS  Google Scholar 

  96. R. Nemeth, L. Tolvaj, M. Bak and T. Alpar, Colour stability of oil-heat treated black locust and poplar wood during short-term UV radiation, J. Photochem. Photobiol., A, 2016, 329, 287–292.

    Article  CAS  Google Scholar 

  97. D. Xing, S. Wang and J. Li, Effect of artificial weathering on the properties of industrial-scale thermally modified wood, BioResources, 2015, 10, 8238–8252.

    CAS  Google Scholar 

  98. I. Kubovský, F. Kacík and L. Reinprecht, The impact of UV radiation on the change of colour and composition of the surface of lime wood treated with a CO2 laser, J. Photochem. Photobiol., A, 2016, 322, 60–66.

    Article  CAS  Google Scholar 

  99. P. Fei, H. Xiong, J. Cai, C. Liu and Y. Yu, Enhanced the weatherability of bamboo fiber-based outdoor building decoration materials by rutile nano-TiO2, Constr. Build. Mater., 2016, 114, 307–316.

    Article  CAS  Google Scholar 

  100. Y. Peng, W. Wang and J. Cao, Preparation of Lignin-Clay Complexes and Its Effects on Properties and Weatherability of Wood Flour/Polypropylene Composites, Ind. Eng. Chem. Res., 2016, 55, 9657–9666.

    Article  CAS  Google Scholar 

  101. G. Di Pasquale and A. Pollicino, Properties of polystyrene clay nanocomposites prepared using two new imidazolium surfactants, J. Nanomater., 2017, DOI: 10.1155/2017/2594958.

  102. S. Senatova, F. Senatov, D. Kuznetsov, A. Stepashkin and J. Issi, Effect of UV-radiation on structure and properties of PP nanocomposites, J. Alloys Compd., 2017, 707, 304–309.

    Article  CAS  Google Scholar 

  103. C. Kaynak and B. Sar, Accelerated weathering performance of polylactide and its montmorillonite nano-composite, Appl. Clay Sci., 2016, 121, 86–94.

    Article  CAS  Google Scholar 

  104. H. Xiu, X. Qi, H. Bai, Q. Zhang and Q. Fu, Simultaneously improving toughness and UV-resistance of polylactide/ titanium dioxide nanocomposites by adding poly (ether) urethane, Polym. Degrad. Stab., 2017, 143, 136–144.

    Article  CAS  Google Scholar 

  105. T. V. Nguyen, P. N. Tri, T. D. Nguyen, R. El Aidani, V. T. Trinh and C. Decker, Accelerated degradation of water borne acrylic nanocomposites used in outdoor protective coatings, Polym. Degrad. Stab., 2016, 128, 65–76.

    Article  CAS  Google Scholar 

  106. P. A. Zapata, A. Zenteno, N. Amigó, F. M. Rabagliati, F. Sepúlveda, F. Catalina and T. Corrales, Study on the photodegradation of nanocomposites based on polypropylene and TiO2 nanotubes, Polym. Degrad. Stab., 2016, 133, 101–107.

    Article  CAS  Google Scholar 

  107. M. Nikolic, J. M. Lawther and A. R. Sanadi, Use of nanofillers in wood coatings: a scientific review, J. Coat. Technol. Res., 2015, 12, 445–461.

    Article  CAS  Google Scholar 

  108. L. B. Akpolat, B. A. Çakır, Ö. Topel and N. Hoda, Synthesis of TiO2 nanoparticles by self-assembling reverse micelle cores of PS-b-PAA for functional textile applications, Mater. Res. Bull, 2015, 64, 117–122.

    Article  CAS  Google Scholar 

  109. C. Wan, Y. Jiao and J. Li, In situ deposition of graphene nanosheets on wood surface by one-pot hydrothermal method for enhanced UV-resistant ability, Appl. Surf. Sci., 2015, 347, 891–897.

    Article  CAS  Google Scholar 

  110. C. Wan, Y. Lu, Q. Sun and J. Li, Hydrothermal synthesis of zirconium dioxide coating on the surface of wood with improved UV resistance, Appl. Surf. Sci., 2014, 321, 38–42.

    Article  CAS  Google Scholar 

  111. W. Gan, L. Gao, Q. Sun, C. Jin, Y. Lu and J. Li, Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties, Appl. Surf. Sci., 2015, 332, 565–572.

    Article  CAS  Google Scholar 

  112. X. Wang, S. Liu, H. Chang and J. Liu, Sol-gel deposition of TiO2 nanocoatings on wood surfaces with enhanced hydrophobicity and photostability, Wood Fiber Sci., 2014, 46, 109–117.

    CAS  Google Scholar 

  113. Y. Lu, S. Xiao, R. Gao, J. Li and Q. Sun, Improved weathering performance and wettability of wood protected by CeO2 coating deposited onto the surface, Holzforschung, 2014, 68, 345–351.

    Article  CAS  Google Scholar 

  114. H. Guo, P. Fuchs, E. Cabane, B. Michen, H. Hagendorfer, Y. E. Romanyuk and I. Burgert, UV-protection of wood surfaces by controlled morphology fine-tuning of ZnO nanostructures, Holzforschung, 2016, 70, 699–708.

    Article  CAS  Google Scholar 

  115. L. Kong, K. Tu, H. Guan and X. Wang, Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency, Appl. Surf. Sci., 2017, 407, 479–484.

    Article  CAS  Google Scholar 

  116. H. T. Sahin and G. I. Mantanis, Colour changes of pine and fir wood treated with several titanium and zincoxide based nanocompounds, Adv. Forestry Lett., 2016, 5, 17–23.

    Article  Google Scholar 

  117. K. Srinivas and K. K. Pandey, Enhancing Photostability of Wood Coatings Using Titanium Dioxide Nanoparticles, in Wood is Good. Current Trends and Future Prospects in Wood Utilization, ed. K. K. Pandey, V. Ramakantha, S. S. Chauhan and A. A. N. Kumar, Springer, New York, 2017, pp. 251–259.

    Google Scholar 

  118. S. Nair, G. B. Nagarajappa and K. K. Pandey, UV stabilization of wood by nano metal oxides dispersed in propylene glycol, J. Photochem. Photobiol., B, 2018, 183, 1–10.

    Article  CAS  Google Scholar 

  119. R. Moya, A. Rodríguez-Zúñiga, J. Vega-Baudrit and A. Puente-Urbina, Effects of adding TiO2 nanoparticles to a water-based varnish for wood applied to nine tropical woods of Costa Rica exposed to natural and accelerated weathering, J. Coat. Technol. Res., 2017, 14, 141–152.

    Article  CAS  Google Scholar 

  120. Y. Dong, Y. Yan, H. Ma, S. Zhang, J. Li, C. Xia, S. Q. Shi and L. Cai, In situ chemosynthesis of ZnO nanoparticles to endow wood with antibacterial and UV-resistance properties, J. Mater. Sci. Technol., 2017, 33, 266–270.

    CAS  Google Scholar 

  121. P. Fei, B. Fei, Y. Yu, H. Xiong and J. Tan, Thermal properties and crystallization behavior of bamboo fiber/high-density polyethylene composites: Nano-TiO2 effects, J. Appl. Polym. Sci., 2014, 131, 39846.

  122. V. Vardanyan, T. Galstian and B. Riedl, Effect of addition of cellulose nanocrystals to wood coatings on color changes and surface roughness due to accelerated weathering, J. Coat. Technol. Res., 2015, 12, 247–258.

    Article  CAS  Google Scholar 

  123. R. B. Kramer, R. Kramer, N. Marshall, J. Rosenberg and R. B. Gupta, Fabric having ultraviolet radiation protection, enhanced resistance to degradation, and enhanced resistance to fire, US Patent Application, US 20150107029A1, 2016.

  124. F. Rezaei, L. Maleknia, P. Valipour and G. Chizari Fard, Improvement properties of nylon fabric by corona pretreatment and nano coating, J. Text. Inst., 2016, 107, 1223–1231.

    Article  CAS  Google Scholar 

  125. K. B. Yazhini and H. G. Prabu, Study on flame-retardant and UV-protection properties of cotton fabric functionalized with ppy-ZnO-CNT nanocomposite, RSC Adv., 2015, 5, 49062–49069.

    Article  CAS  Google Scholar 

  126. M. Zhang, B. Tang, L. Sun and X. Wang, Protection of silica-coated ZnO nanoparticles on pre-dyed polyester fabrics against photofading, J. Text. Inst, 2017, 108, 95–101.

    Article  CAS  Google Scholar 

  127. D. Gao, L. Lyu, B. Lyu, J. Ma, L. Yang and J. Zhang, Multifunctional cotton fabric loaded with Ce doped ZnO nanorods, Mater. Res. Bull., 2017, 89, 102–107.

    Article  CAS  Google Scholar 

  128. B. Wang, Y. Duan and J. Zhang, Titanium dioxide nanoparticles-coated aramid fiber showing enhanced interfacial strength and UV resistance properties, Mater. Des., 2016, 103, 330–338.

    Article  CAS  Google Scholar 

  129. L. Karimi, M. E. Yazdanshenas, R. Khajavi, A. Rashidi and M. Mirjalili, Functional finishing of cotton fabrics using graphene oxide nanosheets decorated with titanium dioxide nanoparticles, J. Text. Inst, 2016, 107, 1122–1134.

    Article  CAS  Google Scholar 

  130. A. Berendjchi, R. Khajavi, A. A. Yousefi and M. E. Yazdanshenas, Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate, Appl. Surf. Sci., 2016, 363, 264–272.

    Article  CAS  Google Scholar 

  131. Y. Yao, B. Tang, W. Chen, L. Sun and X. Wang, Sunlight-induced coloration of silk, Nanoscale Res. Lett., 2016, 11, 293.

  132. S. Gawish, H. Mashaly, H. Helmy, A. Ramadan and R. Farouk, Effect of Mordant on UV Protection and Antimicrobial Activity of Cotton, Wool, Silk and Nylon Fabrics Dyed with Some Natural Dyes, J. Nanomed. Nanotechnol., 2017, 8, 2.

  133. Q. Zhou, J. Lv, L. Cai, Y. Ren, J. Chen, D. Gao, Z. Lu and C. Wang, Preparation and characterization of ZnO/AGE MNPs with aloe gel extract and its application on linen fabric, J. Text. Inst, 2017, 108, 1371–1378.

    Article  CAS  Google Scholar 

  134. B. Zheng, Z. Wang, Q. Guo and S. Zhou, Glass composite as robust UV absorber for biological protection, Opt. Mater. Express, 2016, 6, 531–539.

    Article  CAS  Google Scholar 

  135. B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y. R. De Miguel and L. Bergström, Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens, Sci. Technol. Adv. Mater., 2013, 14 ,023001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. S. Zhuang, X. Xu, J. Yu, B. Feng, W. Xu and J. Hu, Transparent SnO2 QDs-based multifunctional glass for ultraviolet-blocking and enhanced hydrophobicity, Mater. Lett., 2014, 128, 291–294.

    Article  CAS  Google Scholar 

  137. L. Lianli, L. Yujing, S. Tong, X. Shuying, W. Lili and Z. Li, Hydrothermal synthesis and UV irradiation shielding performances of nanometer cerium(IV) oxide thin films, Rare Met. Mater. Eng., 2015, 44, 7–11.

    Article  Google Scholar 

  138. M. A. Reyes-Acosta, A. M. Torres-Huerta, M. A. Domínguez-Crespo, A. I. Flores-Vela, H. J. Dorantes-Rosales and J. A. Andraca-Adame, Thermal, mechanical and UV-shielding properties of poly (methyl methacrylate)/cerium dioxide hybrid systems obtained by melt compounding, Polymers, 2015, 7, 1638–1659.

    Article  CAS  Google Scholar 

  139. X. Chen, N. Yu, L. Zhang, Z. Liu, Z. Wang and Z. Chen, Synthesis of polypyrrole nanoparticles for constructing full-polymer UV/NIR-shielding film, RSC Adv., 2015, 5, 96888–96895.

    Article  CAS  Google Scholar 

  140. J. G. Clar, W. E. Platten, E. J. Baumann, A. Remsen, S. M. Harmon, C. L. Bennett-Stamper, T. A. Thomas and T. P. Luxton, Dermal transfer and environmental release of CeO2 nanoparticles used as UV inhibitors on outdoor surfaces: Implications for human and environmental health, Sci. Total. Environ., 2018, 613, 714–723.

    Article  PubMed  CAS  Google Scholar 

  141. A. J. Koivisto, A. C. Ø. Jensen, K. I. Kling, A. Nørgaard, A. Brinch, F. Christensen and K. A. Jensen, Quantitative material releases from products and articles containing manufactured nanomaterials: Towards a release library, NanoImpact, 2017, 5, 119–132.

    Article  Google Scholar 

  142. T. V. Duncan, Release of engineered nanomaterials from polymer nanocomposites: The effect of matrix degradation, ACS Appl. Mater. Interfaces, 2015, 7, 20–39.

    Article  CAS  PubMed  Google Scholar 

  143. W. Wohlleben and N. Neubauer, Quantitative rates of release from weathered nanocomposites are determined across 5 orders of magnitude by the matrix, modulated by the embedded nanomaterial, NanoImpact, 2016, 1, 39–45.

    Article  Google Scholar 

  144. C. Han, E. Sahle-Demessie, A. Q. Zhao and J. Wang, Environmental aging and degradation of multiwalled carbon nanotube reinforced polypropylene, Carbon, 2018, 129, 137–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. W. He, H. Wu, W. G. Wamer, H.-K. Kim, J. Zheng, H. Jia, Z. Zheng and J.-J. Yin, Unraveling the enhanced photocatalytic activity and phototoxicity of ZnO/metal hybrid nanostructures from generation of reactive oxygen species and charge carriers, ACS Appl. Mater. Interfaces, 2014, 6, 15527–15535.

    Article  CAS  PubMed  Google Scholar 

  146. L. Schlagenhauf, T. Buerki-Thurnherr, Y.-Y. Kuo, A. Wichser, F. Nüesch, P. Wick and J. Wang, Carbon nanotubes released from an epoxy-based nanocomposite: quantification and particle toxicity, Environ. Sci. Technol., 2015, 49, 10616–10623.

  147. S. Harper, W. Wohlleben, M. Doa, B. Nowack, S. Clancy, R. Canady and A. Maynard, Measuring nanomaterial release from carbon nanotube composites: review of the state of the science, in Journal of Physics: Conference Series, IOP Publishing, 2015, vol. 617, p. 012026.

  148. M. Kovochich, C.-C. D. Fung, R. Avanasi and A. K. Madl, Review of techniques and studies characterizing the release of carbon nanotubes from nanocomposites: Implications for exposure and human health risk assessment, J. Exposure Sci. Environ. Epidemiol., 2018, 28, 203.

    Article  CAS  Google Scholar 

  149. T. Lu, E. Solis-Ramos, Y.-B. Yi and M. Kumosa, Synergistic environmental degradation of glass reinforced polymer composites, Polym. Degrad. Stab., 2016, 131, 1–8.

    Article  CAS  Google Scholar 

  150. J. Li, Multiwalled carbon nanotubes reinforced polypropylene composite material, J. Nanomater., 2017, DOI:10.1155/2017/2171356.

  151. M. H. Al-Saleh, Carbon nanotube-filled polypropylene/ polyethylene blends: Compatibilization and electrical properties, Polym. Bull., 2016, 73, 975–987.

    Article  CAS  Google Scholar 

  152. T. Nguyen, B. Pellegrin, C. Bernard, X. Gu, J. M. Gorham, P. Stutzman, D. Stanley, A. Shapiro, E. Byrd and R. Hettenhouser, Fate of nanoparticles during life cycle of polymer nanocomposites, in J. Physics: Conference Series, IOP Publishing, 2011, vol. 304, p. 012060.

  153. R. S. Lankone, J. Wang, J. F. Ranville and D. H. Fairbrother, Photodegradation of polymer-CNT nanocomposites: effect of CNT loading and CNT release characteristics, Environ. Sci.: Nano., 2017, 4, 967–982.

    CAS  Google Scholar 

  154. A. Masek, Flavonoids as natural stabilizers and color indicators of ageing for polymeric materials, Polymers, 2015, 7, 1125–1144.

    Article  CAS  Google Scholar 

  155. M. C. Lahimer, N. Ayed, J. Horriche and S. Belgaied, Characterization of plastic packaging additives: food contact, stability and toxicity, Arabian J. Chem., 2017, 10, S1938–S1954.

  156. R. Gadioli, W. R. Waldman and M. A. De Paoli, Lignin as a green primary antioxidant for polypropylene, J. Appl. Polym. Sci., 2016, 133, 43558.

  157. Y. Peng, R. Liu and J. Cao, Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering, Appl. Surf. Sci., 2015, 332, 253–259.

    Article  CAS  Google Scholar 

  158. A. S. Kabir, Effects of Lignin as a Stabilizer or Antioxidant in Polyolefins, Master of Engineering Science thesis, The University of Western Ontario (London, ON), 2017.

    Google Scholar 

  159. I. Spiridon, K. Leluk, A. M. Resmerita and R. N. Darie, Evaluation of PLA– lignin bioplastics propertiesbefore and after accelerated weathering, Composites, Part B, 2015, 69, 342–349.

    Article  CAS  Google Scholar 

  160. D. Ye, S. Li, X. Lu, X. Zhang and O. J. Rojas, Antioxidant and Thermal Stabilization of Polypropylene by Addition of Butylated Lignin at Low Loadings, ACS Sustainable Chem. Eng., 2016, 4, 5248–5257.

    Article  CAS  Google Scholar 

  161. J. H. Bridson, J. Kaur, Z. Zhang, L. Donaldson and A. Fernyhough, Polymeric flavonoids processed with copolymers as UV and thermal stabilisers for polyethylene films, Polym. Degrad. Stab., 2015, 122, 18–24.

    Article  CAS  Google Scholar 

  162. W. Grigsby and D. Steward, Applying the protective role of condensed tannins to acrylic-based surface coatings exposed to accelerated weathering, J. Polym. Environ., 2017, 1–11.

  163. W. J. Grigsby, Simulating the protective role of bark proanthocyanidins in surface coatings: Unexpected beneficial photo-stabilisation of exposed timber surfaces, Prog. Org. Coat., 2017, 110, 55–61.

    Article  CAS  Google Scholar 

  164. J. Meydbray, Frederic Dross, PV Module Reliability Scorecard Report 2016, DNV GL Report No., 2016. https://www.dnvgl.com/about/index.html.

  165. C.-C. Lin, P. J. Krommenhoek, S. S. Watson and X. Gu, Depth profiling of degradation of multilayer photovoltaic backsheets after accelerated laboratory weathering: Cross-sectional Raman imaging, Sol. Energy Mater. Sol. Cells, 2016, 144, 289–299.

    Article  CAS  Google Scholar 

  166. N. Kim, H. Kang, K.-J. Hwang, C. Han, W. S. Hong, D. Kim, E. Lyu and H. Kim, Study on the degradation of different types of backsheets used in PV module under accelerated conditions, Sol. Energy Mater. Sol. Cells, 2014, 120, 543–548.

    Article  CAS  Google Scholar 

  167. O. Haillant, D. Dumbleton and A. Zielnik, An Arrhenius approach to estimating organic photovoltaic module weathering acceleration factors, Sol. Energy Mater. Sol. Cells, 2011, 95, 1889–1895.

    Article  CAS  Google Scholar 

  168. B. Ottersböck, G. Oreski and G. Pinter, Comparison of different microclimate effects on the aging behavior of encapsulation materials used in photovoltaic modules, Polym. Degrad. Stab., 2017, 138, 182–191.

    Article  CAS  Google Scholar 

  169. M. H. Kim, H. S. Eom, D.-J. Byun and K.-Y. Choi, Photodegradation behavior of ethylene/vinyl acetate copolymer (EVA) film for solar cell encapsulant, Polymer, 2016, 40, 477–482.

    CAS  Google Scholar 

  170. A. Badiee, I. Ashcroft and R. D. Wildman, The thermomechanical degradation of ethylene vinyl acetate used as a solar panel adhesive and encapsulant, Int. J. Adhes. Adhes., 2016, 68, 212–218.

    Article  CAS  Google Scholar 

  171. M. Malaki, Y. Hashemzadeh and M. Karevan, Effect of nano-silica on the mechanical properties of acrylic polyurethane coatings, Prog. Org. Coat., 2016, 101, 477–485.

    Article  CAS  Google Scholar 

  172. A. Z. Bradley, J. Kopchick and B. Hamzavy, Quantifying PV module defects in the service environment, in Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, IEEE, 2015, pp. 1–3.

    Book  Google Scholar 

  173. H. Hongjie, Typical Photovoltaic Backsheet Failure Mode Analysis and Comparison Study with Accelerated Aging Tests. DuPont report, DuPont China R&D Center, Shanghai, China Report No., 2016.

  174. S.-W. Lee, S. Kim, S. Bae, K. Cho, T. Chung, L. E. Mundt, S. Lee, S. Park, H. Park and M. C. Schubert, UV degradation and recovery of perovskite solar cells, Sci. Rep., 2016, 6, 38150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. E. Polydorou, I. Sakellis, A. Soultati, A. Kaltzoglou, T. A. Papadopoulos, J. Briscoe, D. Tsikritzis, M. Fakis, L. C. Palilis and S. Kennou, Avoiding ambient air and light induced degradation in high-efficiency polymer solar cells by the use of hydrogen-doped zinc oxide as electron extraction material, Nano Energy, 2017, 34, 500–514.

    Article  CAS  Google Scholar 

  176. D. C. Bento, E. C. R. Maia, R. V. Fernandes, E. Laureto, G. Louarn and H. De Santana, Photoluminescence and Raman spectroscopy studies of the photodegradation of poly (3-octylthiophene), J. Mater. Sci.: Mater. Electron., 2014, 25, 185–189.

    CAS  Google Scholar 

  177. I. Fraga Dominguez, P. D. Topham, P.-O. Bussiere, D. Bégué and A. Rivaton, Unravelling the photodegradation mechanisms of a low bandgap polymer by combining experimental and modeling approaches, J. Phys. Chem. C, 2015, 119, 2166–2176.

    Article  CAS  Google Scholar 

  178. N. Sai, K. Leung, J. Zádor and G. Henkelman, First principles study of photo-oxidation degradation mechanisms in P3HT for organic solar cells, Phys. Chem. Chem. Phys., 2014, 16, 8092–8099.

    Article  CAS  PubMed  Google Scholar 

  179. A. Badiee, R. Wildman and I. Ashcroft, Effect of UV aging on degradation of Ethylene-vinyl Acetate (EVA) as encapsulant in photovoltaic (PV) modules, in Reliability of Photovoltaic Cells, Modules, Components, and Systems VII, International Society for Optics and Photonics, 2014, Vol. 9179, p. 91790O.

  180. F. Liu, L. Jiang and S. Yang, Ultra-violet degradation behavior of polymeric backsheets for photovoltaic modules, Sol. Energy, 2014, 108, 88–100.

    Article  CAS  Google Scholar 

  181. A. Tournebize, A. s. Rivaton, H. Peisert and T. Chassé, The crucial role of confined residual additives on the photostability of P3HT: PCBM active layers, J. Phys. Chem. C, 2015, 119, 9142–9148.

    Article  CAS  Google Scholar 

  182. M. Bag, S. Banerjee, R. Faust and D. Venkataraman, Self-healing polymer sealant for encapsulating flexible solar cells, Sol. Energy Mater. Sol. Cells, 2016, 145, 418–422.

    Article  CAS  Google Scholar 

  183. I. Topolniak, A. Chapel, J. Gaume, P.-O. Bussiere, G. Chadeyron, J.-L. Gardette and S. Therias, Applications of polymer nanocomposites as encapsulants for solar cells and LEDs: Impact of photodegradation on barrier and optical properties, Polym. Degrad. Stab., 2017, 145 ,52–59.

    Article  CAS  Google Scholar 

  184. K. Duis and A. Coors, Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects, Environ. Sci. Eur., 2016, 28, 2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. H. Leslie, S. Brandsma, M. Van Velzen and A. Vethaak, Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota, Environ. Int., 2017, 101, 133–142.

    Article  CAS  PubMed  Google Scholar 

  186. UNEP, Plastics in Cosmetics: Are we polluting the environment through our personal care? Plastic ingredients that contribute to marine microplastic litter United Nations Environment Programme Report No. ISBN 9280734660, Nairobi, 2016, p. 34.

  187. A. L. Andrady, The plastic in microplastics: A review, Mar. Pollut. Bull, 2017, 119, 12–22.

    Article  CAS  PubMed  Google Scholar 

  188. S. Klein, E. Worch and T. P. Knepper, Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany, Environ. Sci. Technol., 2015, 49, 6070–6076.

    Article  CAS  PubMed  Google Scholar 

  189. R. C. Thompson, Sources, Distribution, and Fate of Microscopic Plastics in Marine Environments. Hazardous Chemicals Associated with Plastics in the Marine Environment, in The Handbook of Environmental Chemistry, ed. H. Takada and H. Karapanagioti, Springer, Cham, 2016, vol. 78, pp. 121–133, ISBN 978-3-319-95568-1.

  190. D.-H. Chae, I.-S. Kim, S.-K. Kim, Y. K. Song and W. J. Shim, Abundance and distribution characteristics of microplastics in surface seawaters of the Incheon/ Kyeonggi coastal region, Arch. Environ. Contam. Toxicol., 2015, 69, 269–278.

    Article  CAS  PubMed  Google Scholar 

  191. K. K. La Daana, R. Officer, O. Lyashevska, R. C. Thompson and I. O’Connor, Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean, Mar. Pollut. Bull., 2017, 115, 307–314.

    Article  CAS  Google Scholar 

  192. Q. Qiu, J. Peng, X. Yu, F. Chen, J. Wang and F. Dong, Occurrence of microplastics in the coastal marine environment: First observation on sediment of China, Mar. Pollut. Bull, 2015, 98, 274–280.

    Article  CAS  PubMed  Google Scholar 

  193. S. Rehse, W. Kloas and C. Zarfl, Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna, Chemosphere, 2016, 153, 91–99.

    Article  CAS  PubMed  Google Scholar 

  194. P. Blarer and P. Burkhardt-Holm, Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum, Environ. Sci. Pollut. Res., 2016, 23, 23522–23532.

    Article  CAS  Google Scholar 

  195. C. D. Rummel, M. G. Löder, N. F. Fricke, T. Lang, E.-M. Griebeler, M. Janke and G. Gerdts, Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea, Mar. Pollut. Bull., 2016, 102, 134–141.

    Article  CAS  PubMed  Google Scholar 

  196. D. Neves, P. Sobral, J. L. Ferreira and T. Pereira, Ingestion of microplastics by commercial fish off the Portuguese coast, Mar. Pollut. Bull., 2015, 101, 119–126.

    Article  CAS  PubMed  Google Scholar 

  197. A. Karami, A. Golieskardi, C. K. Choo, N. Romano, Y. B. Ho and B. Salamatinia, A high-performance protocol for extraction of microplastics in fish, Sci. Total Environ., 2017, 578, 485–494.

    Article  CAS  PubMed  Google Scholar 

  198. C. G. Avio, S. Gorbi, M. Milan, M. Benedetti, D. Fattorini, G. d’Errico, M. Pauletto, L. Bargelloni and F. Regoli, Pollutants bioavailability and toxicological risk from microplastics to marine mussels, Environ. Pollut, 2015, 198, 211–222.

    Article  CAS  PubMed  Google Scholar 

  199. L. Van Cauwenberghe, L. Devriese, F. Galgani, J. Robbens and C. R. Janssen, Microplastics in sediments: a review of techniques, occurrence and effects, Mar. Environ. Res., 2015, 111, 5–17.

    Article  PubMed  CAS  Google Scholar 

  200. P. Kershaw and C. Rochman, Sources, Fate and Effects of Microplastics in the Marine Environment: Part 2 of a Global Assessment, Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) Report No. 1020–4873, 2015.

  201. C. E. Williamson, P. J. Neale, S. Hylander, K. C. Rose, F. L. Figueroa, S. Robinson, D.-P. Häder, S.-Å. Wängberg and R. C. Worrest, The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems, Photochem. Photobiol. Sci., 2019, 18 ,DOI: 10.1039/C8PP90062K.

  202. C. Wesch, K. Bredimus, M. Paulus and R. Klein, Towards the suitable monitoring of ingestion of microplastics by marine biota: A review, Environ. Pollut, 2016, 218, 1200–1208.

    Article  CAS  PubMed  Google Scholar 

  203. C. Nobre, M. Santana, A. Maluf, F. Cortez, A. Cesar, C. Pereira and A. Turra, Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea), Mar. Pollut. Bull., 2015, 92, 99–104.

    CAS  Google Scholar 

  204. E. E. Burns and A. B. Boxall, Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps, Environ. Toxicol. Chem., 2018, 37, 2776–2796.

    Article  CAS  PubMed  Google Scholar 

  205. J. A. Pitt, R. Trevisan, A. Massarsky, J. S. Kozal, E. D. Levin and R. T. Di Giulio, Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): A case study with nanopolystyrene, Sci. Total Environ., 2018, 643, 324–334.

    CAS  Google Scholar 

  206. E. Bergami, E. Bocci, M. L. Vannuccini, M. Monopoli, A. Salvati, K. A. Dawson and I. Corsi, Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae, Ecotoxicol. Environ. Saf., 2016, 123, 18–25.

  207. J. P. da Costa, P. S. Santos, A. C. Duarte and T. Rocha-Santos, (Nano) plastics in the environment-sources, fates and effects, Sci. Total Environ., 2016, 566, 15–26.

    Article  PubMed  CAS  Google Scholar 

  208. N. Kalogerakis, K. Karkanorachaki, G. Kalogerakis, E. Triantafyllidi, A. Gotsis, P. Partsinevelos and F. Fava, Microplastics generation: Onset of fragmentation of polyethylene films in marine environment mesocosms, Front. Mar. Sci., 2017, 4, 84.

  209. S. Lambert and M. Wagner, Formation of microscopic particles during the degradation of different polymers, Chemosphere, 2016, 161, 510–517.

    Article  CAS  PubMed  Google Scholar 

  210. N. A. Welden and P. R. Cowie, Degradation of common polymer ropes in a sublittoral marine environment, Mar. Pollut. Bull, 2017, 118, 248–253.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Andrady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrady, A.L., Pandey, K.K. & Heikkilä, A.M. Interactive effects of solar UV radiation and climate change on material damage. Photochem Photobiol Sci 18, 804–825 (2019). https://doi.org/10.1039/c8pp90065e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp90065e

Navigation