Skip to main content
Log in

Effects of enhanced UV-B radiation on the interaction between rice and Magnaporthe oryzae in Yuanyang terrace

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Enhanced ultraviolet–B (UV-B) radiation affected the growth of rice and Magnaporthe oryzae, and changed the interactions between them. Increased UV-B radiation (5.0 kJ m−2 d−1) on rice leaves in a Yuanyang terrace was conducted before, during, and after infection of the leaves with Magnaporthe oryzae. The relationship between rice blast and UV-B radiation on the disease resistance of rice and the pathogenicity of M. oryzae was studied, and the effects of enhanced UV-B radiation on the interactions between rice and M. oryzae were analysed. The results indicated the following: (1) enhanced UV-B radiation significantly reduced the rice blast disease index, but as infection progressed, the inhibitory effect of UV-B radiation on the disease was weakened. (2) UV-B radiation treatment before infection with M. oryzae (UV-B + M.) significantly increased the activity of the enzymes related to disease resistance (phenylalanine ammonia lyase, lipoxygenase, chitinase, and β-1,3-glucanase), and the plants exhibited light-induced resistance. (3) Exposure to UV-B radiation after M. oryzae infection (M. + UV-B) did not induce disease course-related protein (PR) activity, but the content of soluble sugar increased. The osmotic stress caused by pathogenic fungi infection was alleviated by active accumulation of soluble sugar; due to this lack of nutrients, it was difficult for the rice blast fungus to grow. (4) Enhanced UV-B radiation significantly inhibited the production of conidia by M. oryzae, and the expression of the pathogenic genes Chitinase, MGP1, MAGB, and CPKA was significantly downregulated. The pathogenicity of M. oryzae was reduced by UV-B radiation. The resistance of rice leaves was weakened by simultaneous exposure to UV-B radiation and M. oryzae (UV-B/M.). Hence, UV-B radiation can weaken the infectivity of M. oryzae, improve the resistance of traditional rice, and contain the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. A. F. Bais, G. Bernhard, R. L. McKenzie, P. Aucamp, P. J. Young, M. Ilyas, P. Jöckel and M. Deushi, Photochem. Photobiol. Sci., 2019, 18, 602–640.

    CAS  PubMed  Google Scholar 

  2. G. Fu and Z. X. Shen, Acta Physiol. Plant., 2017, 39, 85.

    Article  CAS  Google Scholar 

  3. R. H. Yin and R. Ulm, Curr. Opin. Plant Biol., 2017, 37, 42–48.

    Article  CAS  PubMed  Google Scholar 

  4. Y. M. He, F. D. Zhan, Y. Li, W. W. Xu, Y. Q. Zu and M. Yue, Photochem. Photobiol. Sci., 2016, 15, 735–743.

    Article  CAS  PubMed  Google Scholar 

  5. J. Wang, S. Yang, B. B. Zhang, W. X. Liu, M. F. Deng, S. P. Chen and L. L. Liu, Plant Soil, 2017, 419, 71–81.

    Article  CAS  Google Scholar 

  6. J. L. Jacobs and G. W. Sundin, Appl. Environ. Microbiol., 2001, 67, 5488–5496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Y. Li, J. L. Yang, X. L. Wang and Z. D. Hu, China Environ. Sci., 1999, 19, 157–160.

    Google Scholar 

  8. C. Ribot, J. Hirsch, S. Batzergue, D. Tharreau, J. L. Notteghem, M. H. Lebrun and J. B. Morel, J. Plant Physiol., 2008, 165, 114–124.

    Article  CAS  PubMed  Google Scholar 

  9. D. L. Tang, R. Kang, C. B. Coyne, H. J. Zeh and M. T. Lotze, Immunol. Rev., 2012, 249, 158–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Shao, J. S. Wang, R. A. Dean, Y. J. Lin, X. W. Gao and S. J. Hu, Plant Biotechnol. J., 2008, 6, 73–81.

    CAS  PubMed  Google Scholar 

  11. Y. M. He, X. Li, F. D. Zhan, C. M. Xie, Y. Q. Zu, Y. Li and M. Yue, J. Plant Interact., 2018, 13, 321–328.

    Article  CAS  Google Scholar 

  12. G. I. Jenkins, in Annual Review of Plant Biology, 2009, pp. 407–431.

  13. R. A. Dixon, L. Achnine, P. Kota, C. J. Liu, M. S. S. Reddy and L. J. Wang, Mol. Plant Pathol., 2002, 3, 371–390.

    Article  CAS  PubMed  Google Scholar 

  14. B. B. Surjadinata, D. A. Jacobo-Velazquez and L. Cisneros-Zevallos, Molecules, 2017, 22, 668.

    Article  PubMed Central  CAS  Google Scholar 

  15. H. C. Rawal, N. K. Singh and T. R. Sharma, Int. J. Genomics, 2013, 678969.

  16. J. L. Huang, M. Gu, Z. B. Lai, B. F. Fan, K. Shi, Y. H. Zhou, J. Q. Yu and Z. X. Chen, Plant Physiol., 2010, 153, 1526–1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. J. Chen, Y. L. Piao, Y. M. Liu, X. N. Li and Z. Y. Piao, Plant Sci., 2018, 270, 257–267.

    Article  CAS  PubMed  Google Scholar 

  18. F. Mauch, B. Mauchmani and T. Boller, Plant Physiol., 1988, 88, 936–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. M. He, F. D. Zhan, Y. Q. Zu, C. Liu and Y. Li, Int. J. Agric. Biol., 2014, 16, 585–590.

    CAS  Google Scholar 

  20. S. Pilati, D. Brazzale, G. Guella, A. Milli, C. Ruberti, F. Biasioli, M. Zottini and C. Moser, BMC Plant Biol., 2014, 14, 87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. E. Hideg, M. A. K. Jansen and A. Strid, Trends Plant Sci., 2013, 18, 107–115.

    Article  CAS  PubMed  Google Scholar 

  22. M. Marroquin-Guzman, D. Hartline, J. D. Wright, C. Elowsky, T. J. Bourret and R. A. Wilson, Nat. Microbiol., 2017, 2, 17054.

    Article  CAS  PubMed  Google Scholar 

  23. T. M. Robson, P. J. Aphalo, A. K. Banaś, P. W. Barnes, C. C. Brelsford, G. I. Jenkins, T. K. Kotilainen, J. Łabuz, J. Martínez-Abaigar and L. O. Morales, Photochem. Photobiol. Sci., 2019, 1963–1971.

    Google Scholar 

  24. Y. L. Wang, X. P. Hu, Y. L. Fang, A. Anchieta, P. H. Goldman, G. Hernandez and S. J. Klosterman, Microbiology, 2018, 164, 685–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R. P. Rastogi, Richa, A. Kumar, M. B. Tyagi and R. P. Sinha, J. Nucleic Acids, 2010, 2010, 592980.

    PubMed  PubMed Central  Google Scholar 

  26. Y. J. Han, C. Z. Lin, Q. Q. Wang, D. G. Lu and Z. H. Wang, Chin. J. Trop. Crop, 2013, 34, 1544–1551.

    Google Scholar 

  27. C. Z. Lin, Functional analysis of assumed chitinase gene in rice blast fungus, University of Agriculture and Forestry In Fujian, 2010.

  28. M. Rodriguez-Martin, G. Martin-Ezquerra, M. Q. Man, M. Hupe, J. K. Youm, D. S. Mackenzie, S. Cho, C. Trullas, W. M. Holleran, K. A. Radek and P. M. Elias, J. Invest. Dermatol., 2011, 131, 2263–2270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. W. L. Franck, E. Gokce, Y. Y. Oh, D. C. Muddiman and R. A. Dean, Mol. Cell. Proteomics, 2013, 12, 2249–2265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. E. Vergne, X. Grand, E. Ballini, V. Chalvon, P. Saindrenan, D. Tharreau, J. L. Notteghem and J. B. Morel, BMC Plant Biol., 2010, 10, 206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. X. Li, Y. M. He, C. M. Xie, Y. Q. Zu, F. D. Zhan, X. Y. Mei, Y. Xia and Y. Li, Photochem. Photobiol. Sci., 2018, 17, 8–17.

    Article  CAS  PubMed  Google Scholar 

  32. Y. A. Yao, Y. Q. Zu and Y. Li, Acta Physiol. Plant., 2006, 28, 49–57.

    Article  Google Scholar 

  33. M. M. Caldwell, Photophysiology, 1971, 6, 131–177.

    Article  CAS  Google Scholar 

  34. IRRI, Standard evaluation system for rice (SES), Los Banos, Philippine, 2002.

  35. V. G. Kakani, K. R. Reddy, D. Zhao and W. Gao, Physiol. Plant., 2004, 121, 250–257.

    Article  CAS  PubMed  Google Scholar 

  36. R. Franke, S. Fry and H. Kauss, Plant Cell Rep., 1998, 17, 379–383.

    Article  CAS  PubMed  Google Scholar 

  37. S. Das, P. Chakraborty, P. Mandal, D. Saha and A. Saha, J. Phytopathol., 2017, 165, 755–761.

    Article  CAS  Google Scholar 

  38. N. T. Govender, M. Mahmood, I. A. Seman and M. Y. Wong, Front. Plant Sci., 2017, 8, 1395.

    Article  PubMed  PubMed Central  Google Scholar 

  39. A. M. Lima, E. F. Moura, A. K. N. Ishida, A. C. D. Pereira, S. P. dos Reis and C. R. B. de Souza, Physiological and Mol. Plant Pathol., 2018, 104, 23–30.

    Article  CAS  Google Scholar 

  40. D. Schenke, C. Böttcher and D. Scheel, Plant, Cell Environ., 2011, 34, 1849–1864.

    Article  CAS  Google Scholar 

  41. N. H. Bhuiyan, G. Selvaraj, Y. Wei and J. King, Plant Signaling Behav., 2009, 4, 158–159.

    Article  CAS  Google Scholar 

  42. N. V. Zagoskina, G. A. Dubravina, A. K. Alyavina and E. A. Goncharuk, Russ. J. Plant Physiol., 2003, 50, 270–275.

    Article  CAS  Google Scholar 

  43. R. Jelte, B. Peter and B. Peter, Environ. Pollut., 2005, 137, 428–442.

    Article  CAS  Google Scholar 

  44. G. G. Lina, J. Yusuke, K. Yuji, T. Yuhong and R. A. Dixon, New Phytol., 2011, 190, 627–639.

    Article  CAS  Google Scholar 

  45. Z. Qiao and R. A. Dixon, Trends Plant Sci., 2011, 16, 227–233.

    Article  CAS  Google Scholar 

  46. K. Karthishwaran, S. Al Shamisi, S. S. Kurup, S. Sakkir and A. J. Cheruth, Biotechnol. Biotechnol. Equip., 2018, 32, 156–162.

    Article  CAS  Google Scholar 

  47. C. Yang, W. Li, J. D. Cao, F. W. Meng, Y. Q. Yu, J. K. Huang, L. Jiang, M. X. Liu, Z. G. Zhang, X. W. Chen, K. Miyamoto, H. Yamane, J. S. Zhang, S. Y. Chen and J. Liu, Plant J., 2017, 89, 338–353.

    Article  CAS  PubMed  Google Scholar 

  48. S. Azarabadi, H. Abdollahi, M. Torabi, Z. Salehi and J. Nasiri, Eur. J. Plant Pathol., 2017, 147, 279–294.

    Article  CAS  Google Scholar 

  49. L. C. van Loon, Eur. J. Plant Pathol., 2007, 119, 243–254.

    Article  CAS  Google Scholar 

  50. P. U. Anushree, R. M. Naik and R. D. Satbhai, Arch. Pflanzenschutz, 2016, 49, 167–181.

    Article  CAS  Google Scholar 

  51. E. Kombrink, M. Schröder and K. Hahlbrock, Proc. Natl. Acad. Sci. U. S. A., 1988, 85, 782–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. T. Michaela, B. Guy, T. Stephan, D. Thorsten, L. Christian and S. Heinrich, J. Plant Physiol., 1996, 148, 222–228.

    Article  Google Scholar 

  53. Y. Jha and R. B. Subramanian, Effect of Root-Associated Bacteria on Soluble Sugar Metabolism in Plant Under Environmental Stress[M]//Plant Metabolites and Regulation Under Environmental Stress, Academic Press, 2018, pp. 231–240.

  54. M. R. B. Moghaddam and W. V. D. Ende, J. Exp. Bot., 2012, 63, 3989.

    Article  CAS  Google Scholar 

  55. C. M. Rojas, M. Senthil-Kumar, V. Tzin and K. S. Mysore, Front. Plant Sci., 2014, 5, 17.

    Article  PubMed  PubMed Central  Google Scholar 

  56. P. N. Bhattacharyya and D. K. Jha, World J. Microbiol. Biotechnol., 2012, 28, 1327–1350.

    Article  CAS  PubMed  Google Scholar 

  57. P. Cheng, Z. H. Ma, X. J. Wang, C. Q. Wang, Y. Li, S. H. Wang and H. G. Wang, Crop Prot., 2014, 65, 6–14.

    Article  Google Scholar 

  58. F. Wu, Y. Zheng, C. Wan and R. Wu, Ecol. Environ. (in chinese), 2008, 17, 962–965.

    Google Scholar 

  59. G. U. Braga, S. D. Flint, C. D. Miller, A. J. Anderson and D. W. Roberts, Photochem. Photobiol., 2001, 74, 734–739.

    Article  CAS  PubMed  Google Scholar 

  60. X. Ye, Q. Sun and Z. Liu, J. Agric. Sci. Technol., 2015, 17, 87–94.

    CAS  Google Scholar 

  61. M. Bencina, M. Legisa and N. D. Read, Mol. Microbiol., 2005, 56, 268–281.

    Article  CAS  PubMed  Google Scholar 

  62. B. Stein, P. Angel, H. v. Dam, H. Ponta, P. Herrlich, A. van der Eb and H. J. Rahmsdorf, Photochem. Photobiol., 1992, 55, 409–415.

    Article  CAS  PubMed  Google Scholar 

  63. A. Wingler and T. Roitsch, Plant Biol., 2008, 10, 50–62.

    Article  CAS  PubMed  Google Scholar 

  64. G. G. Wehner, C. C. Balko, M. M. Enders, K. K. Humbeck and F. F. Ordon, BMC Plant Biol., 2015, 15, 125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. N. Mohammadkhani and R. Heidari, World Appl. Sci. J., 2008, 3, 448–453.

    Google Scholar 

  66. H. Shen, W. Ye, L. Hong, H. Huang, Z. Wang, X. Deng, Q. Yang and Z. Xu, Plant Biol., 2006, 8, 175–185.

    Article  CAS  PubMed  Google Scholar 

  67. M. T. Charles, K. Tano, A. Asselin and J. Arul, Postharvest Biol. Technol., 2009, 51, 414–424.

    Article  CAS  Google Scholar 

  68. P. N. Dodds and J. P. Rathjen, Nat. Rev. Genet., 2010, 11, 539–548.

    Article  CAS  PubMed  Google Scholar 

  69. X. Li, C. M. Xie, Y. M. He, Y. Q. Zu, C. Wang, H. R. Li and Y. Li, J. Agro-Environ. Sci., 2018, 37, 613–620.

    Google Scholar 

  70. J. Vera, J. Castro, A. Gonzalez and A. Moenne, Mar. Drugs, 2011, 9, 2514–2525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. C. Wasternack and B. Hause, Ann. Bot., 2013, 111, 1021–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. S. Matsuura and S. Ishikura, Lett. Appl. Microbiol., 2014, 59, 457–463.

    Article  CAS  PubMed  Google Scholar 

  73. M. A. K. Jansen, V. Gaba and B. M. Greenberg, Trends Plant Sci., 1998, 3, 131–135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Huang, L., He, Y. et al. Effects of enhanced UV-B radiation on the interaction between rice and Magnaporthe oryzae in Yuanyang terrace. Photochem Photobiol Sci 18, 2965–2976 (2019). https://doi.org/10.1039/c8pp00556g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00556g

Navigation