Skip to main content
Log in

Ternary semiconductor ZnxAg1−xS nanocomposites for efficient photocatalytic degradation of organophosphorus pesticides

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The construction of ternary semiconductor nanostructures has attracted much attention in photocatalysis by virtue of their tunable elemental composition and band structure. Here, ternary semiconductor ZnxAg1−xS (0 ≤ x ≤ 1) composites were successfully prepared by a simple and low-cost hydrothermal method without using any surfactant. Combined analyses using XRD, N2 sorption, SEM, TEM and UV-vis DRS revealed that the ternary composite semiconductor materials exhibited well-developed crystalline frameworks, large surface areas of 15–70 m2 g−1, sizes of 10–30 nm, and outstanding UV light absorption properties. Data from XRD and TEM indicate that photocatalysis might contribute to the formation of the strong interfacial interaction between ZnS and Ag2S nanoparticles. The photocatalytic activities were investigated via the degradation of organophosphorus pesticides, including malathion (MLT), monocrotophos (MCP) and chlorpyrifos (CPS), using the ZnxAg1−xS composites under UV light irradiation. The toxicity of MLT, MCP, and CPS was reduced by photocatalysis and photolysis; however, photocatalysis had a greater impact. Superior photocatalytic performance was exhibited by the Zn0.5Ag0.5S catalyst owing to its large surface area and the presence of Ag0 with improved charge transfer in comparison with that of bare ZnS and Ag2S. Assays of stability and reusability indicated that the Zn0.5Ag0.5S composite retained more than 85% of its activity after five cycles of use. On the basis of the results, a possible photocatalytic mechanism of the prepared samples was proposed. This study indicates a potential application of the ternary semiconductor materials in the efficient UV light-driven photocatalytic degradation of other pollutants that may cause environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Chong, B. Jin, C. W. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 2010, 44, 2997–3027.

    Article  CAS  PubMed  Google Scholar 

  2. N. Savage, M. S. Diallo, Nanomaterials and water purification: opportunities and challenges, J. Nanopart. Res., 2005, 7, 331–342.

    Article  CAS  Google Scholar 

  3. D. Ayodhya, G. Veerabhadram, Green synthesis characterization, photocatalytic, fluorescence and antimicrobial activities of Cochlospermum gossypium capped Ag2S nanoparticles, J. Photochem. Photobiol., B, 2016, 157, 57–69.

    Article  CAS  Google Scholar 

  4. A. Fakhri, P. A. Nejad, Antimicrobial, antioxidant and cytotoxic effect of Molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination, J. Photochem. Photobiol., B, 2016, 159, 211–217.

    Article  CAS  Google Scholar 

  5. D. Ayodhya, G. Veerabhadram, Preparation, characterization, photocatalytic, sensing and antimicrobial studies of Calotropis gigantea leaf extract capped CuS NPs by a green approach, J. Inorg. Organomet. Polym., 2017, 27, 215–230.

    Article  CAS  Google Scholar 

  6. L. A. Ioannou, E. Hapeshi, M. I. Vasquez, D. Mantzavinos, D. Fatta-Kassinos, Solar/TiO2 photocatalytic decomposition of β-blockers atenolol and propranolol in water and wastewater, Sol. Energy, 2011, 85, 1915–1926.

    Article  CAS  Google Scholar 

  7. N. Ajoudanian, A. Nezamzadeh-Ejhieh, Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin, Mater. Sci. Semicond. Process., 2015, 36, 162–169.

    Article  CAS  Google Scholar 

  8. D. Ayodhya, G. Veerabhadram, A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection, Mater. Today Energy, 2018, 9, 83–113.

    Article  Google Scholar 

  9. H. Park, H. I. Kim, G. H. Moon, W. Choi, Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2, Energy Environ. Sci., 2016, 9, 411–433.

    Article  CAS  Google Scholar 

  10. B. Jin, X. Li, X. Zhou, X. Xu, H. Jian, M. Li, K. Guo, J. Guan, S. Yan, Fabrication and characterization of nanocomposite film made from a jackfruit filum polysaccharide incorporating TiO2 nanoparticles by photocatalysis, RSC Adv., 2017, 7, 16931–16937.

    Article  CAS  Google Scholar 

  11. N. K. R. Eswar, P. C. Ramamurthy, G. Madras, High photoconductive combustion synthesized TiO2 derived nanobelts for photocatalytic water purification under solar irradiation, New J. Chem., 2015, 39, 6040–6051.

    Article  CAS  Google Scholar 

  12. L. Ye, X. Jin, Y. Leng, Y. Su, H. Xie, C. Liu, Synthesis of black ultrathin BiOCl nanosheets for efficient photocatalytic H2 production under visible light irradiation, J. Power Sources, 2015, 293, 409–415.

    Article  CAS  Google Scholar 

  13. K. V. A. Kumar, S. R. Amanchi, B. Sreedhar, P. Ghosal, C. Subrahmanyam, Phenol and Cr(VI) degradation with Mn ion doped ZnO under visible light photocatalysis, RSC Adv., 2017, 7, 43030–43039.

    Article  CAS  Google Scholar 

  14. L. Rimoldi, D. Meroni, E. Falletta, V. Pifferi, L. Falciola, G. Cappelletti, S. Ardizzone, Emerging pollutant mixture mineralization by TiO2 photocatalysts. The role of the water medium, Photochem. Photobiol. Sci., 2017, 16, 60–66.

    Article  CAS  PubMed  Google Scholar 

  15. N. K. R. Eswar, P. C. Ramamurthy, G. Madras, Enhanced sunlight photocatalytic activity of Ag3PO4 decorated novel combustion synthesis derived TiO2 nanobelts for dye and bacterial degradation, Photochem. Photobiol. Sci., 2015, 14, 1227–1237.

    Article  CAS  PubMed  Google Scholar 

  16. D. Ayodhya, G. Veerabhadram, Hydrothermally generated and highly efficient sunlight responsive SiO2 and TiO2 capped Ag2S nanocomposites for photocatalytic degradation of organic dyes, J. Environ. Chem. Eng., 2018, 6, 311–324.

    Article  CAS  Google Scholar 

  17. C. M. Chang, K. L. Orchard, B. C. Martindale, E. Reisner, Ligand removal from CdS quantum dots for enhanced photocatalytic H2 generation in pH neutral water, J. Mater. Chem., 2016, 4, 2856–2862.

    Article  CAS  Google Scholar 

  18. D. Ayodhya, M. Venkatesham, A. S. Kumari, G. B. Reddy, D. Ramakrishna, G. Veerabhadram, Photocatalytic degradation of dye pollutants under solar, visible and UV lights using green synthesised CuS nanoparticles, J. Exp. Nanosci., 2016, 11, 418–432.

    Article  CAS  Google Scholar 

  19. A. Ishikawa, T. Takata, T. Matsumura, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, Oxysulfides Ln2Ti2S2O5 as stable photocatalysts for water oxidation and reduction under visible-light irradiation, J. Phys. Chem. B, 2004, 108, 2637–3642.

    Article  CAS  Google Scholar 

  20. J. Sato, N. Saito, Y. Yamada, K. Maeda, T. Takata, J. N. Kondo, M. Hara, H. Kobayash, K. Domen, Y. Inoue, RuO2-loaded β-Ge3N4 as a non-oxide photocatalyst for overall water splitting, J. Am. Chem. Soc., 2005, 127, 4150–4151.

    Article  CAS  PubMed  Google Scholar 

  21. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water, Nature, 2006, 440, 295.

    Article  CAS  PubMed  Google Scholar 

  22. B. Ohtani, Photocatalysis A to Z-What we know and what we do not know in a scientific sense, J. Photochem. Photobiol., C, 2010, 11, 157–178.

    Article  CAS  Google Scholar 

  23. X. Chen, S. Shen, L. Guo, S. S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 2010, 110, 6503–6570.

    Article  CAS  PubMed  Google Scholar 

  24. Q. Jing, X. Feng, X. Zhao, Z. Duan, J. Pan, L. Chen, Y. Liu, Bi/BiVO4 Chain-like Hollow Microstructures: Synthesis, Characterization and Application as Visible-Light-Active Photocatalysts, ACS Appl. Nano Mater., 2018, 1, 2653–2661.

    Article  CAS  Google Scholar 

  25. T. Li, L. Zhao, Y. He, J. Cai, M. Luo, J. Lin, Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation, Appl. Catal., B, 2013, 129, 255–263.

    Article  CAS  Google Scholar 

  26. T. Li, Y. Wang, Y. He, J. Cai, M. Luo, L. Zhao, Preparation and photocataytic property of Sr0.25Bi0.75O1.36 photocatalyst, Mater. Lett., 2012, 74, 170–172.

    Article  CAS  Google Scholar 

  27. A. Priyadharsan, V. Vasanthakumar, S. Karthikeyan, V. Raj, S. Shanavas, P. M. Anbarasan, Multi-functional properties of ternary CeO2/SnO2/rGO nanocomposites: Visible light driven photocatalyst and heavy metal removal, J. Photochem. Photobiol., A, 2017, 346, 32–45.

    Article  CAS  Google Scholar 

  28. Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties, J. Am. Chem. Soc., 2011, 113, 6490–6492.

    Article  CAS  Google Scholar 

  29. D. Ayodhya, G. Veerabhadram, Investigation of structural, optical, catalytic, fluorescence studies of eco-friendly synthesized Bi2S3 nanostructures, Superlattices Microstruct., 2017, 102, 103–118.

    Article  CAS  Google Scholar 

  30. D. Ayodhya, G. Veerabhadram, One-pot green synthesis, characterization, photocatalytic, sensing and antimicrobial studies of Calotropis gigantea leaf extract capped CdS NPs, Mater. Sci. Eng., B, 2017, 225, 33–44.

    Article  CAS  Google Scholar 

  31. M. K. Choudhary, J. Kataria, S. Sharma, Novel Green Biomimetic Approach for Preparation of Highly Stable Au-ZnO Heterojunctions with Enhanced Photocatalytic Activity, ACS Appl. Nano Mater., 2018, 1, 1870–1878.

    Article  CAS  Google Scholar 

  32. Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications, ACS Appl. Mater. Interfaces, 2014, 6, 2174–2184.

    Article  CAS  PubMed  Google Scholar 

  33. D. Ayodhya, G. Veerabhadram, Green synthesis, optical, structural, photocatalytic, fluorescence quenching and degradation studies of ZnS nanoparticles, J. Fluoresc., 2016, 26, 2165–2175.

    Article  CAS  PubMed  Google Scholar 

  34. J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan, C. L. Bai, Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles, Angew. Chem., Int. Ed., 2005, 117, 1295–1299.

    Article  Google Scholar 

  35. D. Ayodhya, G. Veerabhadram, Microwave-assisted synthesis, characterization and photoluminescence interaction studies of undoped, Zr2+, Rh3+ and Pd2+ doped ZnS quantum dots, Mater. Discovery, 2018, 12, 1–8.

    Article  Google Scholar 

  36. H. C. Youn, S. Baral, J. H. Fendler, Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation, J. Phys. Chem., 1988, 92, 6320–6327.

    Article  CAS  Google Scholar 

  37. V. K. Gupta, A. Fakhri, M. Azad, S. Agarwal, Synthesis and characterization of Ag doped ZnS quantum dots for enhanced photocatalysis of Strychnine as a poison: Charge transfer behavior study by electrochemical impedance and time-resolved photoluminescence spectroscopy, J. Colloid Interface Sci., 2018, 510, 95–102.

    Article  PubMed  CAS  Google Scholar 

  38. A. Fkiri, A. Mezni, L. S. Smiri, Facile Synthesis of Cu Doped Au–ZnS Photocatalyst, J. Inorg. Organomet. Polym., 2018, 28, 27–34.

    Article  CAS  Google Scholar 

  39. I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Novel stannite-type complex sulfide photocatalysts AI2-Zn-AIV-S4 (AI = Cu and Ag; AIV = Sn and Ge) for hydrogen evolution under visible-light irradiation, Chem. Mater., 2010, 22, 1402–1409.

    Article  CAS  Google Scholar 

  40. Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen, C. Li, Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method, Chem. Commun., 2003, 2142–2143.

    Google Scholar 

  41. S. Shi, M. A. Gondal, A. A. Al-Saadi, R. Fajgar, J. Kupcik, X. Chang, K. Shen, Q. Xu, Z. S. Seddigi, Facile preparation of g-C3N4 modified BiOCl hybrid photocatalyst and vital role of frontier orbital energy levels of model compounds in photoactivity enhancement, J. Colloid Interface Sci., 2014, 416, 212–219.

    Article  CAS  PubMed  Google Scholar 

  42. Y. Wu, M. Xing, B. Tian, J. Zhang, F. Chen, Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light, Chem. Eng. J., 2010, 162, 710–717.

    Article  CAS  Google Scholar 

  43. K. Nagaveni, M. S. Hegde, G. Madras, Structure, photocatalytic activity of Ti1-xMxO2±1 (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method, J. Phys. Chem. B, 2004, 108, 20204–20212.

    Article  CAS  Google Scholar 

  44. C. J. Xing, Y. J. Zhang, W. Yan, L. J. Guo, Band structure controlled solid solution of Cd1–xZnxS photocatalyst for hydrogen production by water splitting, Int. J. Hydrogen Energy, 2006, 31, 2018–2024.

    Article  CAS  Google Scholar 

  45. X. Zhao, S. Su, G. Wu, C. Li, Z. Qin, X. Lou, J. Zhou, Facile synthesis of the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres with enhanced photocatalytic performance, Appl. Surf. Sci., 2017, 406, 254–264.

    Article  CAS  Google Scholar 

  46. C. Wang, E. Yifeng, L. Fan, S. Yang, Y. Li, CdS-Ag nanocomposite arrays: enhanced electro-chemiluminescence but quenched photoluminescence, J. Mater. Chem., 2009, 19, 3841–3846.

    Article  CAS  Google Scholar 

  47. H. X. Sang, X. T. Wang, C. C. Fan, F. Wang, Enhanced photocatalytic H2 production from glycerol solution over ZnO/ZnS core/shell nanorods prepared by a low temperature route, Int. J. Hydrogen Energy, 2012, 37, 1348–1355.

    Article  CAS  Google Scholar 

  48. P. Fageria, S. Gangopadhyay, S. Pande, Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light, RSC Adv., 2014, 4, 24962–24972.

    Article  CAS  Google Scholar 

  49. J. Xue, S. Ma, Y. Zhou, Z. Zhang, P. Jiang, Synthesis of Ag/ZnO/C plasmonic photocatalyst with enhanced adsorption capacity and photocatalytic activity to antibiotics, RSC Adv., 2015, 5, 18832–18840.

    Article  CAS  Google Scholar 

  50. S. P. Adhikari, H. R. Pant, J. H. Kim, H. J. Kim, C. H. Park, C. S. Kim, One pot synthesis and characterization of Ag-ZnO/g-C3N4 photocatalyst with improved photoactivity and antibacterial properties, Colloids Surf., A, 2015, 482, 477–484.

    Article  CAS  Google Scholar 

  51. F. Chen, Q. Yang, Y. Zhong, H. An, J. Zhao, T. Xie, Q. Xu, X. Li, D. Wang, G. Zeng, Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation, Water Res., 2016, 101, 555–563.

    Article  CAS  PubMed  Google Scholar 

  52. F. Chen, Q. Yang, X. Li, G. Zeng, D. Wang, C. Niu, J. Zhao, H. An, T. Xie, Y. Deng, Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation, Appl. Catal., B, 2017, 200, 330–342.

    Article  CAS  Google Scholar 

  53. F. Chen, Q. Yang, Y. Wang, F. Yao, Y. Ma, X. Huang, X. Li, D. Wang, G. Zeng, H. Yu, Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(VI) reduction and ciprofloxacin oxidation under visible light: Kinetics, degradation pathways and mechanism, Chem. Eng. J., 2018, 348, 157–170.

    Article  CAS  Google Scholar 

  54. F. Chen, Q. Yang, S. Wang, F. Yao, J. Sun, Y. Wang, C. Zhang, X. Li, C. Niu, D. Wang, G. Zeng, Graphene oxide and carbon nitride nanosheets co-modified silver chromate nanoparticles with enhanced visible-light photoactivity and anti-photocorrosion properties towards multiple refractory pollutants degradation, Appl. Catal., B, 2017, 209, 493–505.

    Article  CAS  Google Scholar 

  55. D. Ayodhya, G. Veerabhadram, Highly efficient sunlight-driven photocatalytic degradation of organic pollutants and fluorescence detection of Hg2+ using multifunctional GO-Bi2S3 nanostructures, J. Photochem. Photobiol., A, 2018, 356, 545–555.

    Article  CAS  Google Scholar 

  56. M. Khatamian, M. S. Oskoui, M. Haghighi, M. Darbandi, Visible-light response photocatalytic water splitting over CdS/TiO2 and CdS-TiO2/metalosilicate composites, Int. J. Energy Res., 2014, 38, 1712–1726.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Head, Department of Chemistry, Osmania University for providing the necessary facilities. The authors would like to thank DST–FIST, New Delhi, India for providing necessary analytical facilities in the department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dasari Ayodhya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayodhya, D., Veerabhadram, G. Ternary semiconductor ZnxAg1−xS nanocomposites for efficient photocatalytic degradation of organophosphorus pesticides. Photochem Photobiol Sci 17, 1429–1442 (2018). https://doi.org/10.1039/c8pp00220g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00220g

Navigation